IDEAS home Printed from https://ideas.repec.org/h/wsi/wschap/9789811202391_0063.html
   My bibliography  Save this book chapter

Forecasting Net Charge-Off Rates of Banks: A PLS Approach

In: HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING

Author

Listed:
  • James R. Barth
  • Sunghoon Joo
  • Hyeongwoo Kim
  • Kang Bok Lee
  • Stevan Maglic
  • Xuan Shen

Abstract

This chapter relies on a factor-based forecasting model for net charge-off rates of banks in a data-rich environment. More specifically, we employ a partial least squares (PLS) method to extract target-specific factors and find that it outperforms the principal component approach in-sample by construction. Further, we apply PLS to out-of-sample forecasting exercises for aggregate bank net charge-off rates on various loans as well as for similar individual bank rates using over 250 quarterly macroeconomic data from 1987Q1 to 2016Q4. Our empirical results demonstrate superior performance of PLS over benchmark models, including both a stationary autoregressive type model and a nonstationary random walk model. Our approach can help banks identify important variables that contribute to bank losses so that they are better able to contain losses to manageable levels.

Suggested Citation

  • James R. Barth & Sunghoon Joo & Hyeongwoo Kim & Kang Bok Lee & Stevan Maglic & Xuan Shen, 2020. "Forecasting Net Charge-Off Rates of Banks: A PLS Approach," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 63, pages 2265-2301, World Scientific Publishing Co. Pte. Ltd..
  • Handle: RePEc:wsi:wschap:9789811202391_0063
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0063
    Download Restriction: Ebook Access is available upon purchase.

    File URL: https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0063
    Download Restriction: Ebook Access is available upon purchase.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lee, Lorraine & Petter, Stacie & Fayard, Dutch & Robinson, Shani, 2011. "On the use of partial least squares path modeling in accounting research," International Journal of Accounting Information Systems, Elsevier, vol. 12(4), pages 305-328.
    2. Charmele Ayadurai & Rasol Eskandari, 2018. "Bank Soundness: A PLS-SEM Approach," International Series in Operations Research & Management Science, in: Necmi K. Avkiran & Christian M. Ringle (ed.), Partial Least Squares Structural Equation Modeling, chapter 0, pages 31-52, Springer.
    3. Kim, Hyeongwoo & Ko, Kyunghwan, 2020. "Improving forecast accuracy of financial vulnerability: PLS factor model approach," Economic Modelling, Elsevier, vol. 88(C), pages 341-355.
    4. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    5. Necmi K. Avkiran, 2018. "Rise of the Partial Least Squares Structural Equation Modeling: An Application in Banking," International Series in Operations Research & Management Science, in: Necmi K. Avkiran & Christian M. Ringle (ed.), Partial Least Squares Structural Equation Modeling, chapter 0, pages 1-29, Springer.
    6. Hyeongwoo Kim & Kyunghwan Ko, 2017. "Improving Forecast Accuracy of Financial Vulnerability: Partial Least Squares Factor Model Approach," Working Papers 2017-14, Economic Research Institute, Bank of Korea.
    7. Bryan Kelly & Seth Pruitt, 2013. "Market Expectations in the Cross-Section of Present Values," Journal of Finance, American Finance Association, vol. 68(5), pages 1721-1756, October.
    8. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    9. Nitzl, Christian, 2016. "The use of partial least squares structural equation modelling (PLS-SEM) in management accounting research: Directions for future theory development," Journal of Accounting Literature, Elsevier, vol. 37(C), pages 19-35.
    10. Necmi K. Avkiran & Christian M. Ringle (ed.), 2018. "Partial Least Squares Structural Equation Modeling," International Series in Operations Research and Management Science, Springer, number 978-3-319-71691-6, April.
    11. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guerrieri, Luca & Harkrader, James Collin, 2021. "What drives bank performance?," Economics Letters, Elsevier, vol. 204(C).
    2. Mohamed M. Khalifa Tailab, 2020. "Using Importance-Performance Matrix Analysis to Evaluate the Financial Performance of American Banks During the Financial Crisis," SAGE Open, , vol. 10(1), pages 21582440209, January.
    3. Carlos Canizares Martinez, 2023. "Leaning against housing booms fueled by credit," Working and Discussion Papers WP 9/2023, Research Department, National Bank of Slovakia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed M. Khalifa Tailab, 2020. "Using Importance-Performance Matrix Analysis to Evaluate the Financial Performance of American Banks During the Financial Crisis," SAGE Open, , vol. 10(1), pages 21582440209, January.
    2. A. Blanco-Oliver & A. Irimia-Diéguez, 2021. "Impact of outreach on financial performance of microfinance institutions: a moderated mediation model of productivity, loan portfolio quality, and profit status," Review of Managerial Science, Springer, vol. 15(3), pages 633-668, April.
    3. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    4. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    5. Yuan Liao & Xinjie Ma & Andreas Neuhierl & Zhentao Shi, 2023. "Economic Forecasts Using Many Noises," Papers 2312.05593, arXiv.org, revised Dec 2023.
    6. María del Carmen Valls Martínez & Pedro Antonio Martín-Cervantes & Ana María Sánchez Pérez & María del Carmen Martínez Victoria, 2021. "Learning Mathematics of Financial Operations during the COVID-19 Era: An Assessment with Partial Least Squares Structural Equation Modeling," Mathematics, MDPI, vol. 9(17), pages 1-21, September.
    7. Ma, Feng & Wang, Ruoxin & Lu, Xinjie & Wahab, M.I.M., 2021. "A comprehensive look at stock return predictability by oil prices using economic constraint approaches," International Review of Financial Analysis, Elsevier, vol. 78(C).
    8. Reis, Pedro Manuel Nogueira & Pinho, Carlos, 2020. "A new European investor sentiment index (EURsent) and its return and volatility predictability," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    9. Faria, Gonçalo & Verona, Fabio, 2018. "Forecasting stock market returns by summing the frequency-decomposed parts," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
    10. Alexandridis, Antonios K. & Apergis, Iraklis & Panopoulou, Ekaterini & Voukelatos, Nikolaos, 2023. "Equity premium prediction: The role of information from the options market," Journal of Financial Markets, Elsevier, vol. 64(C).
    11. Qi Liu & Libin Tao & Weixing Wu & Jianfeng Yu, 2017. "Short- and Long-Run Business Conditions and Expected Returns," Management Science, INFORMS, vol. 63(12), pages 4137-4157, December.
    12. Dai, Zhifeng & Kang, Jie & Wen, Fenghua, 2021. "Predicting stock returns: A risk measurement perspective," International Review of Financial Analysis, Elsevier, vol. 74(C).
    13. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    14. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    15. Seiler, Volker & Fanenbruck, Katharina Maria, 2021. "Acceptance of digital investment solutions: The case of robo advisory in Germany," Research in International Business and Finance, Elsevier, vol. 58(C).
    16. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    17. Andrew Detzel & Hong Liu & Jack Strauss & Guofu Zhou & Yingzi Zhu, 2021. "Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard‐to‐value fundamentals," Financial Management, Financial Management Association International, vol. 50(1), pages 107-137, March.
    18. Jun-Hwa Cheah & Hiram Ting & T. Ramayah & Mumtaz Ali Memon & Tat-Huei Cham & Enrico Ciavolino, 2019. "A comparison of five reflective–formative estimation approaches: reconsideration and recommendations for tourism research," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(3), pages 1421-1458, May.
    19. Cristian Busu & Mihail Busu, 2020. "Research on the Factors of Competition in the Green Procurement Processes: A Case Study for the Conditions of Romania Using PLS-SEM Methodology," Mathematics, MDPI, vol. 9(1), pages 1-16, December.
    20. Ruan, Qingsong & Wang, Zilin & Zhou, Yaping & Lv, Dayong, 2020. "A new investor sentiment indicator (ISI) based on artificial intelligence: A powerful return predictor in China," Economic Modelling, Elsevier, vol. 88(C), pages 47-58.

    More about this item

    Keywords

    Financial Econometrics; Financial Mathematics; Financial Statistics; Financial Technology; Machine Learning; Covariance Regression; Cluster Effect; Option Bound; Dynamic Capital Budgeting; Big Data;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wschap:9789811202391_0063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/page/worldscibooks .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.