IDEAS home Printed from https://ideas.repec.org/r/eee/proeco/v131y2011i2p721-726.html
   My bibliography  Save this item

Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
  2. Arnaud Abad & Michell Arias & Paola Ravelojaona, 2023. "Environmental Productivity Assessment: an Illustration with the Ecuadorian Oil Industry," Working Papers hal-03574542, HAL.
  3. Theodoros Skevas & Teresa Serra, 2016. "The role of pest pressure in technical and environmental inefficiency analysis of Dutch arable farms: an event-specific data envelopment approach," Journal of Productivity Analysis, Springer, vol. 46(2), pages 139-153, December.
  4. Magdalena Kapelko, 2018. "Measuring inefficiency for specific inputs using data envelopment analysis: evidence from construction industry in Spain and Portugal," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 43-66, March.
  5. Shen, Zhiyang & Boussemart, Jean-Philippe & Leleu, Hervé, 2017. "Aggregate green productivity growth in OECD’s countries," International Journal of Production Economics, Elsevier, vol. 189(C), pages 30-39.
  6. Du, Limin & Lu, Yunguo & Ma, Chunbo, 2022. "Carbon efficiency and abatement cost of China's coal-fired power plants," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
  7. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
  8. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2015. "Assessing environmental performance trends in the transport industry: Eco-innovation or catching-up?," Energy Economics, Elsevier, vol. 51(C), pages 570-580.
  9. Mehdiloozad, Mahmood & Sahoo, Biresh K. & Roshdi, Israfil, 2014. "A generalized multiplicative directional distance function for efficiency measurement in DEA," European Journal of Operational Research, Elsevier, vol. 232(3), pages 679-688.
  10. Stergiou, Eirini & Rigas, Nikos & Kounetas, Konstantinos E., 2023. "Environmental productivity growth across European industries," Energy Economics, Elsevier, vol. 123(C).
  11. Briec, Walter & Fukuyama, Hirofumi & Ravelojaona, Paola, 2021. "Exponential distance function and duality theory," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1002-1014.
  12. Wu, Yueh-Cheng & Lin, Sheng-Wei, 2022. "Efficiency evaluation of Asia's cultural tourism using a dynamic DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
  13. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
  14. Andrés J. Picazo-Tadeo & Juana Castillo & Mercedes Beltrán-Esteve, 2013. "A dynamic approach to measuring ecological-economic performance with directional distance functions: greenhouse gas emissions in the European Union," Working Papers 1304, Department of Applied Economics II, Universidad de Valencia.
  15. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
  16. Duman, Yavuz Selman & Kasman, Adnan, 2018. "Environmental technical efficiency in EU member and candidate countries: A parametric hyperbolic distance function approach," Energy, Elsevier, vol. 147(C), pages 297-307.
  17. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
  18. Kapelko, M. & Horta, I.M. & Camanho, A.S. & Oude Lansink, A., 2015. "Measurement of input-specific productivity growth with an application to the construction industry in Spain and Portugal," International Journal of Production Economics, Elsevier, vol. 166(C), pages 64-71.
  19. Pengsheng Li & Yanying Chen, 2019. "The Influence of Enterprises’ Bargaining Power on the Green Total Factor Productivity Effect of Environmental Regulation—Evidence from China," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
  20. Zhang, Zibin & Ye, Jianliang, 2015. "Decomposition of environmental total factor productivity growth using hyperbolic distance functions: A panel data analysis for China," Energy Economics, Elsevier, vol. 47(C), pages 87-97.
  21. Xian, Yujiao & Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2019. "Would China’s power industry benefit from nationwide carbon emission permit trading? An optimization model-based ex post analysis on abatement cost savings," Applied Energy, Elsevier, vol. 235(C), pages 978-986.
  22. Juan Aparicio & Magdalena Kapelko & Lidia Ortiz, 2021. "Modelling environmental inefficiency under a quota system," Operational Research, Springer, vol. 21(2), pages 1097-1124, June.
  23. Hyoung Seok Lee & Yongrok Choi, 2019. "Environmental Performance Evaluation of the Korean Manufacturing Industry Based on Sequential DEA," Sustainability, MDPI, vol. 11(3), pages 1-14, February.
  24. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
  25. Du, Juan & Chen, Yao & Huang, Ying, 2018. "A Modified Malmquist-Luenberger Productivity Index: Assessing Environmental Productivity Performance in China," European Journal of Operational Research, Elsevier, vol. 269(1), pages 171-187.
  26. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
  27. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
  28. Aparicio, Juan & Borras, Fernando & Pastor, Jesus T. & Vidal, Fernando, 2015. "Measuring and decomposing firm׳s revenue and cost efficiency: The Russell measures revisited," International Journal of Production Economics, Elsevier, vol. 165(C), pages 19-28.
  29. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
  30. Nishat Tasnim & Munshi Naser Ibne Afzal, 2018. "An empirical investigation of country level efficiency and national systems of entrepreneurship using Data Envelopment Analysis (DEA) and the TOBIT model," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 8(1), pages 1-17, December.
  31. Liu, Guangtian & Wang, Bing & Zhang, Ning, 2016. "A coin has two sides: Which one is driving China’s green TFP growth?," Economic Systems, Elsevier, vol. 40(3), pages 481-498.
  32. Eirini Stergiou & Nikos Rigas & Eftychia Zaroutieri & Konstantinos Kounetas, 2023. "Energy, renewable and technical efficiency convergence: a global evidence," Economic Change and Restructuring, Springer, vol. 56(3), pages 1601-1628, June.
  33. Yang, Fuxia & Yang, Mian, 2015. "Analysis on China's eco-innovations: Regulation context, intertemporal change and regional differences," European Journal of Operational Research, Elsevier, vol. 247(3), pages 1003-1012.
  34. Qingxian An & Haoxun Chen & Jie Wu & Liang Liang, 2015. "Measuring slacks-based efficiency for commercial banks in China by using a two-stage DEA model with undesirable output," Annals of Operations Research, Springer, vol. 235(1), pages 13-35, December.
  35. Mikuláš Luptáèik & Bernhard Mahlberg, 2012. "Efficiency change over time in a multisectoral economic system," Department of Economic Policy Working Paper Series 001, Department of Economic Policy, Faculty of National Economy, University of Economics in Bratislava.
  36. Sahoo, Biresh K. & Mehdiloozad, Mahmood & Tone, Kaoru, 2014. "Cost, revenue and profit efficiency measurement in DEA: A directional distance function approach," European Journal of Operational Research, Elsevier, vol. 237(3), pages 921-931.
  37. Arnaud Abad, 2020. "Environmental Efficiency and Productivity Analysis," Working Papers hal-03032038, HAL.
  38. Kumbhakar, Subal C. & Tsionas, Mike G., 2021. "Dissections of input and output efficiency: A generalized stochastic frontier model," International Journal of Production Economics, Elsevier, vol. 232(C).
  39. Esteban Lafuente & László Szerb & Zoltan J. Acs, 2016. "Country level efficiency and national systems of entrepreneurship: a data envelopment analysis approach," The Journal of Technology Transfer, Springer, vol. 41(6), pages 1260-1283, December.
  40. Haiying Liu & Wenqi Guo & Yu Wang & Dianwu Wang, 2022. "Impact of Resource on Green Growth and Threshold Effect of International Trade Levels: Evidence from China," IJERPH, MDPI, vol. 19(5), pages 1-20, February.
  41. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
  42. Picazo-Tadeo, Andrés J. & Castillo-Giménez, Juana & Beltrán-Esteve, Mercedes, 2014. "An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union," Ecological Economics, Elsevier, vol. 100(C), pages 173-182.
  43. Kounetas, Konstantinos, 2015. "Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries," Energy Policy, Elsevier, vol. 83(C), pages 277-287.
  44. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
  45. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
  46. Roshdi, Israfil & Hasannasab, Maryam & Margaritis, Dimitris & Rouse, Paul, 2018. "Generalised weak disposability and efficiency measurement in environmental technologies," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1000-1012.
  47. Magdalena Kapelko & Alfons Oude Lansink & Spiro E. Stefanou, 2017. "Input-Specific Dynamic Productivity Change: Measurement and Application to European Dairy Manufacturing Firms," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 579-599, June.
  48. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.
  49. Ayouba, Kassoum & Boussemart, Jean-Philippe & Lefer, Henri-Bertrand & Leleu, Hervé & Parvulescu, Raluca, 2022. "An indirect, Luenberger approach to price performance," International Journal of Production Economics, Elsevier, vol. 244(C).
  50. Magdalena Kapelko & Alfons Oude Lansink, 2018. "Managerial and program inefficiency for European meat manufacturing firms: A dynamic multidirectional inefficiency analysis approach," Journal of Productivity Analysis, Springer, vol. 49(1), pages 25-36, February.
  51. Lee, Hyoungsuk & Choi, Yongrok, 2018. "Greenhouse gas performance of Korean local governments based on non-radial DDF," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 13-21.
  52. Stergiou, Eirini & Rigas, Nikos & Kounetas, Konstantinos, 2021. "Environmental Productivity and Convergence of European Manufacturing Industries. Are they Under Pressure?," MPRA Paper 110780, University Library of Munich, Germany.
  53. Pinar Celikkol Geylani & Magdalena Kapelko & Spiro E. Stefanou, 2021. "Dynamic productivity change differences between global and non-global firms: a firm-level application to the U.S. food and beverage industries," Operational Research, Springer, vol. 21(2), pages 901-923, June.
  54. Juo, Jia-Ching & Fu, Tsu-Tan & Yu, Ming-Miin, 2012. "Non-oriented slack-based decompositions of profit change with an application to Taiwanese banking," Omega, Elsevier, vol. 40(5), pages 550-561.
  55. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
  56. Ke Wang & Yujiao Xian & Yi-Ming Wei & Zhimin Huang, 2016. "Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function," CEEP-BIT Working Papers 91, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  57. Aparicio, Juan & Mahlberg, Bernhard & Pastor, Jesus T. & Sahoo, Biresh K., 2014. "Decomposing technical inefficiency using the principle of least action," European Journal of Operational Research, Elsevier, vol. 239(3), pages 776-785.
  58. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
  59. Qianru Chen & Hualin Xie, 2019. "Temporal-Spatial Differentiation and Optimization Analysis of Cultivated Land Green Utilization Efficiency in China," Land, MDPI, vol. 8(11), pages 1-17, October.
  60. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Sahoo, Biresh K. & Mahanty, Biswajit, 2017. "Rationality of energy efficiency improvement targets under the PAT scheme in India – A case of thermal power plants," Energy Economics, Elsevier, vol. 66(C), pages 279-289.
  61. Stenger, Melle Agathe & Stenger, Agathe, 2017. "A remark on the definition of the Färe–Lovell measure for infeasible production vectors: implication for the Luenberger productivity indicator," International Journal of Production Economics, Elsevier, vol. 184(C), pages 1-6.
  62. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
  63. Chang, Dong-Shang & Liu, Wenrong & Yeh, Li-Ting, 2013. "Incorporating the learning effect into data envelopment analysis to measure MSW recycling performance," European Journal of Operational Research, Elsevier, vol. 229(2), pages 496-504.
  64. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
  65. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
  66. Sun, Yunpeng & Razzaq, Asif & Kizys, Renatas & Bao, Qun, 2022. "High-speed rail and urban green productivity: The mediating role of climatic conditions in China," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
  67. Zuoren Sun & Chao An & Huachen Sun, 2018. "Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
  68. Feng, Guohua & Serletis, Apostolos, 2014. "Undesirable outputs and a primal Divisia productivity index based on the directional output distance function," Journal of Econometrics, Elsevier, vol. 183(1), pages 135-146.
  69. Subhash C. Ray & Shilpa Sethia, 2023. "A State-Level Resource Allocation Model for Emission Reduction and Efficiency Improvement in Thermal Power Plants," Working papers 2023-08, University of Connecticut, Department of Economics.
  70. Lin, Yu-Hui & Fu, Tsu-Tan & Chen, Chia-Li & Juo, Jia-Ching, 2017. "Non-radial cost Luenberger productivity indicator," European Journal of Operational Research, Elsevier, vol. 256(2), pages 629-639.
  71. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
  72. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.