IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v245y1997i3p411-422.html
   My bibliography  Save this item

Large financial crashes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Akaev, Askar A. (Акаев, Аскар А.) & Korotayev, Andrey V (Коротаев, Андрей В.), 2017. "Toward Forecasting Global Economic Dynamics of the Forthcoming Years [К Прогнозированию Глобальной Экономической Динамики Ближайших Лет]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 1, pages 8-39, February.
  2. Gregory G. Brunk, 2003. "Swarming of innovations, fractal patterns, and the historical time series of US patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(1), pages 61-80, January.
  3. Tiago Cruz Gonçalves & Jorge Victor Quiñones Borda & Pedro Rino Vieira & Pedro Verga Matos, 2022. "Log Periodic Power Analysis of Critical Crashes: Evidence from the Portuguese Stock Market," Economies, MDPI, vol. 10(1), pages 1-19, January.
  4. Anders Johansen & Didier Sornette & Olivier Ledoit, 1999. "Empirical and Theoretical Status of Discrete Scale Invariance in Financial Crashes," Finance 9903006, University Library of Munich, Germany.
  5. Gregory G. Brunk, 2002. "Why Do Societies Collapse?," Journal of Theoretical Politics, , vol. 14(2), pages 195-230, April.
  6. Fry, J. M., 2010. "Gaussian and non-Gaussian models for financial bubbles via econophysics," MPRA Paper 27307, University Library of Munich, Germany.
  7. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
  8. Caetano, Marco Antonio Leonel & Yoneyama, Takashi, 2012. "A method for detection of abrupt changes in the financial market combining wavelet decomposition and correlation graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4877-4882.
  9. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
  10. Zhou, Wei-Xing & Sornette, Didier, 2006. "Fundamental factors versus herding in the 2000–2005 US stock market and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 459-482.
  11. Ruiqiang Song & Min Shu & Wei Zhu, 2021. "The 2020 Global Stock Market Crash: Endogenous or Exogenous?," Papers 2101.00327, arXiv.org.
  12. Wong, Jian Cheng & Lian, Heng & Cheong, Siew Ann, 2009. "Detecting macroeconomic phases in the Dow Jones Industrial Average time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4635-4645.
  13. Xingxing Ye & Raphael Douady, 2018. "Systemic Risk Indicators Based on Nonlinear PolyModel," JRFM, MDPI, vol. 12(1), pages 1-24, December.
  14. Fry, J. M., 2009. "Statistical modelling of financial crashes: Rapid growth, illusion of certainty and contagion," MPRA Paper 16027, University Library of Munich, Germany.
  15. Zhou, Wei-Xing & Sornette, Didier, 2004. "Antibubble and prediction of China's stock market and real-estate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 243-268.
  16. Sornette, Didier & Johansen, Anders, 1998. "A hierarchical model of financial crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 581-598.
  17. Giulio Cifarelli and Paolo Paesani, 2021. "Navigating the Oil Bubble: A Non-linear Heterogeneous-agent Dynamic Model of Futures Oil Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
  18. Alexey Fomin & Andrey Korotayev & Julia Zinkina, 2016. "Negative oil price bubble is likely to burst in March - May 2016. A forecast on the basis of the law of log-periodical dynamics," Papers 1601.04341, arXiv.org.
  19. Wei-Xing Zhou & Didier Sornette, 2003. "Nonparametric Analyses Of Log-Periodic Precursors To Financial Crashes," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1107-1125.
  20. Rivera-Castro, Miguel A. & Miranda, José G.V. & Cajueiro, Daniel O. & Andrade, Roberto F.S., 2012. "Detecting switching points using asymmetric detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 170-179.
  21. Piotr Gnacinski & Danuta Makowiec, 2003. "Another type of log-periodic oscillations on Polish stock market?," Papers cond-mat/0307323, arXiv.org, revised Aug 2003.
  22. Chen, Zhiping & Duan, Qihong, 2011. "New models of trader beliefs and their application for explaining financial bubbles," Economic Modelling, Elsevier, vol. 28(5), pages 2215-2227, September.
  23. Askar Akaev & Andrey Korotayev, 2016. "Global economic dynamics of the forthcoming years. A forecast," Papers 1612.09189, arXiv.org.
  24. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
  25. Song, Ruiqiang & Shu, Min & Zhu, Wei, 2022. "The 2020 global stock market crash: Endogenous or exogenous?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
  26. Domino, Krzysztof, 2012. "The use of the Hurst exponent to investigate the global maximum of the Warsaw Stock Exchange WIG20 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 156-169.
  27. Askar Akaev & Alexei Fomin & Andrey Korotayev, 2011. "The Second Wave of the Global Crisis? A Log-Periodic Oscillation Analysis of Commodity Price Series," Papers 1107.0480, arXiv.org.
  28. Bikramaditya Ghosh & Spyros Papathanasiou & Nikita Ramchandani & Dimitrios Kenourgios, 2021. "Diagnosis and Prediction of IIGPS’ Countries Bubble Crashes during BREXIT," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
  29. Anderson, Keith & Brooks, Chris & Katsaris, Apostolos, 2010. "Speculative bubbles in the S&P 500: Was the tech bubble confined to the tech sector?," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 345-361, June.
  30. Zhou, Wei-Xing & Sornette, Didier, 2004. "Causal slaving of the US treasury bond yield antibubble by the stock market antibubble of August 2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 586-608.
  31. Anders Johansen & Didier Sornette, 2000. "The Nasdaq crash of April 2000: Yet another example of log-periodicity in a speculative bubble ending in a crash," Papers cond-mat/0004263, arXiv.org, revised May 2000.
  32. Mariani, M.C. & Liu, Y., 2007. "A new analysis of the effects of the Asian crisis of 1997 on emergent markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 307-316.
  33. Mariani, Maria C. & Basu, Kanadpriya, 2015. "Spline interpolation techniques applied to the study of geophysical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 68-79.
  34. Yan, Wanfeng & Woodard, Ryan & Sornette, Didier, 2012. "Diagnosis and prediction of rebounds in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1361-1380.
  35. Mariani, M.C. & Bezdek, P. & Serpa, L. & Florescu, I., 2011. "Ising type models applied to Geophysics and high frequency market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4396-4402.
  36. Zhou, Wei-Xing & Sornette, Didier, 2006. "Is there a real-estate bubble in the US?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 297-308.
  37. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
  38. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 'COVID' Crash of the 2020 U.S. Stock Market," Papers 2101.03625, arXiv.org.
  39. Xingxing Ye & Raphaël Douady, 2019. "Risk and Financial Management Article Systemic Risk Indicators Based on Nonlinear PolyModel," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02488592, HAL.
  40. Gee Kwang Randolph Tan & Xiao Qin, 2005. "Bubbles, Can We Spot Them? Crashes, Can We Predict Them?," Computing in Economics and Finance 2005 206, Society for Computational Economics.
  41. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
  42. Johansen, Anders, 2003. "Characterization of large price variations in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 157-166.
  43. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
  44. Mariani, M.C. & Florescu, I. & SenGupta, I. & Beccar Varela, M.P. & Bezdek, P. & Serpa, L., 2013. "Lévy models and scale invariance properties applied to Geophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 824-839.
  45. Zhou, Wei-Xing & Sornette, Didier, 2005. "Testing the stability of the 2000 US stock market “antibubble”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 428-452.
  46. Marco Airoldi & Vito Antonelli & Bruno Bassetti & Andrea Martinelli & Marco Picariello, 2004. "Long Range Interaction Generating Fat-Tails in Finance," GE, Growth, Math methods 0404006, University Library of Munich, Germany, revised 27 Apr 2004.
  47. Wanfeng Yan & Ryan Woodard & Didier Sornette, 2010. "Diagnosis and Prediction of Market Rebounds in Financial Markets," Papers 1003.5926, arXiv.org, revised Mar 2011.
  48. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Why credit risk markets are predestined for exhibiting log-periodic power law structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 427-449.
  49. Yu Zhang & Xiaosong Zheng, 2016. "A Study of Herd Behavior Based on the Chinese Stock Market," Journal of Applied Management and Investments, Department of Business Administration and Corporate Security, International Humanitarian University, vol. 5(2), pages 131-135, May.
  50. Fry, J. M., 2010. "Bubbles and crashes in finance: A phase transition from random to deterministic behaviour in prices," MPRA Paper 24778, University Library of Munich, Germany.
  51. Sergey V. Tsirel & Askar Akaev & Alexey Fomin & Andrey V. Korotayev, 2010. "Log-Periodic Oscillation Analysis and Possible Burst of the "Gold Bubble" in April - June 2011," Papers 1012.4118, arXiv.org.
  52. Qin Xiao & Gee Kwang Randolph Tan, 2007. "Signal Extraction with Kalman Filter: A Study of the Hong Kong Property Price Bubbles," Urban Studies, Urban Studies Journal Limited, vol. 44(4), pages 865-888, April.
  53. B. M. Roehner, 1999. "Identifying the bottom line after a stock market crash," Papers cond-mat/9910213, arXiv.org.
  54. Grobys, Klaus, 2023. "A finite-time singularity in the dynamics of the US equity market: Will the US equity market eventually collapse?," International Review of Financial Analysis, Elsevier, vol. 89(C).
  55. N Blasco & P Corredor & S Ferreruela, 2011. "Detecting intentional herding: what lies beneath intraday data in the Spanish stock market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1056-1066, June.
  56. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
  57. B. M. Roehner & D. Sornette, 2000. ""Thermometers" of Speculative Frenzy," Papers cond-mat/0001353, arXiv.org.
  58. Focardi, Sergio & Cincotti, Silvano & Marchesi, Michele, 2002. "Self-organization and market crashes," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 241-267, October.
  59. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
  60. Caetano, Marco Antonio Leonel & Yoneyama, Takashi, 2009. "A new indicator of imminent occurrence of drawdown in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3563-3571.
  61. Dion Harmon & Marco Lagi & Marcus A M de Aguiar & David D Chinellato & Dan Braha & Irving R Epstein & Yaneer Bar-Yam, 2015. "Anticipating Economic Market Crises Using Measures of Collective Panic," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
  62. Askar Akaev & Andrey Korotayev & Alexey Fomin, 2012. "Global Inflation Dynamics: regularities & forecasts," Papers 1207.4069, arXiv.org.
  63. Vakhtina, Elena & Wosnitza, Jan Henrik, 2015. "Capital market based warning indicators of bank runs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 304-320.
  64. Leopoldo S'anchez-Cant'u & Carlos Arturo Soto-Campos & Andriy Kryvko, 2016. "Evidence of Self-Organization in Time Series of Capital Markets," Papers 1604.03996, arXiv.org, revised Mar 2017.
  65. Fry, J. M., 2009. "Bubbles and contagion in English house prices," MPRA Paper 17687, University Library of Munich, Germany.
  66. Domino, Krzysztof, 2011. "The use of the Hurst exponent to predict changes in trends on the Warsaw Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 98-109.
  67. Shu, Min & Zhu, Wei, 2020. "Real-time prediction of Bitcoin bubble crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
  68. Matassini, Lorenzo, 2001. "The trading rectangle strategy within book models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 449-456.
  69. Faggini, Marisa & Bruno, Bruna & Parziale, Anna, 2019. "Crises in economic complex networks: Black Swans or Dragon Kings?," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 105-115.
  70. Didier Sornette & Wei-Xing Zhou, 2003. "The US 2000-2002 market descent: clarification," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 39-41.
  71. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
  72. Marcelo M. de Oliveira & Alexandre C. L. Almeida, 2014. "Testing for rational speculative bubbles in the Brazilian residential real-estate market," Papers 1401.7615, arXiv.org.
  73. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
  74. Matassini, Lorenzo & Franci, Fabio, 2001. "On financial markets trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 526-542.
  75. Shu, Min & Song, Ruiqiang & Zhu, Wei, 2021. "The ‘COVID’ crash of the 2020 U.S. Stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
  76. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
  77. Caetano, Marco Antonio Leonel & Yoneyama, Takashi, 2015. "Boolean network representation of contagion dynamics during a financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 1-6.
  78. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
  79. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
  80. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
  81. Mariani, M.C. & Liu, Y., 2007. "Normalized truncated Levy walks applied to the study of financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 590-598.
  82. Rivera-Castro, Miguel A. & Miranda, José G.V. & Borges, Ernesto P. & Cajueiro, Daniel O. & Andrade, Roberto F.S., 2012. "A top–bottom price approach to understanding financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1489-1496.
  83. Christopher Lynch & Benjamin Mestel, 2017. "Logistic Model For Stock Market Bubbles And Anti-Bubbles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-24, September.
  84. Heping Pan, 2012. "Yin-yang volatility in scale space of price-time: a core structure of financial market risk," China Finance Review International, Emerald Group Publishing, vol. 2(2), pages 377-405, August.
  85. Johansen, Anders & Sornette, Didier, 2001. "Finite-time singularity in the dynamics of the world population, economic and financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(3), pages 465-502.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.