IDEAS home Printed from https://ideas.repec.org/p/eei/rpaper/eeri_rp_2009_10.html
   My bibliography  Save this paper

Statistical modelling of financial crashes: Rapid growth, illusion of certainty and contagion

Author

Listed:
  • John M. Fry

Abstract

We develop a rational expectations model of financial bubbles and study ways in which a generic risk-return interplay is incorporated into prices. We retain the interpretation of the leading Johansen-Ledoit-Sornette model, namely, that the price must rise prior to a crash in order to compensate a representative investor for the level of risk. This is accompanied, in our stochastic model, by an illusion of certainty as described by a decreasing volatility function. The basic model is then extended to incorporate multivariate bubbles and contagion, non-Gaussian models and models based on stochastic volatility. Only in a stochastic volatility model where the mean of the log-returns is considered fixed does volatility increase prior to a crash.

Suggested Citation

  • John M. Fry, 2009. "Statistical modelling of financial crashes: Rapid growth, illusion of certainty and contagion," EERI Research Paper Series EERI_RP_2009_10, Economics and Econometrics Research Institute (EERI), Brussels.
  • Handle: RePEc:eei:rpaper:eeri_rp_2009_10
    as

    Download full text from publisher

    File URL: http://www.eeri.eu/documents/wp/EERI_RP_2009_10.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    2. Sornette, D & Malevergne, Y, 2001. "From rational bubbles to crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 40-59.
    3. George Chang & James Feigenbaum, 2006. "A Bayesian analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 15-36.
    4. Sornette, Didier & Johansen, Anders, 1997. "Large financial crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 411-422.
    5. J.A. Feigenbaum, 2001. "A statistical analysis of log-periodic precursors to financial crashes-super-," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 346-360, March.
    6. Andersen, J.V. & Sornette, D., 2004. "Fearless versus fearful speculative financial bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 565-585.
    7. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    8. Laurent Laloux & Marc Potters & Rama Cont & Jean-Pierre Aguilar & Jean-Philippe Bouchaud, 1998. "Are financial crashes predictable?," Science & Finance (CFM) working paper archive 9804111, Science & Finance, Capital Fund Management.
    9. Zhou, Wei-Xing & Sornette, Didier, 2003. "2000–2003 real estate bubble in the UK but not in the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 249-263.
    10. D. Sornette & J. V. Andersen, 2002. "A Nonlinear Super-Exponential Rational Model Of Speculative Financial Bubbles," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 171-187.
    11. J. A. Feigenbaum, 2001. "More on a statistical analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 527-532.
    12. D. Sornette & J. V. Andersen, 2001. "A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles," Papers cond-mat/0104341, arXiv.org, revised Apr 2002.
    13. Anders Johansen, 2004. "Origin of Crashes in 3 US stock markets: Shocks and Bubbles," Papers cond-mat/0401210, arXiv.org.
    14. George Chang & James Feigenbaum, 2008. "Detecting log-periodicity in a regime-switching model of stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 723-738.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fry, J. M., 2010. "Bubbles and crashes in finance: A phase transition from random to deterministic behaviour in prices," MPRA Paper 24778, University Library of Munich, Germany.
    2. Fry, J. M., 2010. "Gaussian and non-Gaussian models for financial bubbles via econophysics," MPRA Paper 27307, University Library of Munich, Germany.
    3. Fry, J. M., 2009. "Bubbles and contagion in English house prices," MPRA Paper 17687, University Library of Munich, Germany.
    4. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    5. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    6. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    7. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    8. John Fry & McMillan David, 2015. "Stochastic modelling for financial bubbles and policy," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1002152-100, December.
    9. John Fry, 2014. "Bubbles, shocks and elementary technical trading strategies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(1), pages 1-13, January.
    10. Wei-Xing Zhou & Didier Sornette, 2003. "Nonparametric Analyses Of Log-Periodic Precursors To Financial Crashes," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1107-1125.
    11. D. Sornette & R. Woodard, "undated". "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Working Papers CCSS-09-003, ETH Zurich, Chair of Systems Design.
    12. Zhou, Wei-Xing & Sornette, Didier, 2006. "Is there a real-estate bubble in the US?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 297-308.
    13. Vakhtina, Elena & Wosnitza, Jan Henrik, 2015. "Capital market based warning indicators of bank runs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 304-320.
    14. Fry, John, 2012. "Exogenous and endogenous crashes as phase transitions in complex financial systems," MPRA Paper 36202, University Library of Munich, Germany.
    15. Li Lin & Didier Sornette, 2009. "Diagnostics of Rational Expectation Financial Bubbles with Stochastic Mean-Reverting Termination Times," Papers 0911.1921, arXiv.org.
    16. Zhou, Wei-Xing & Sornette, Didier, 2003. "Evidence of a worldwide stock market log-periodic anti-bubble since mid-2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(3), pages 543-583.
    17. Li Lin & Didier Sornette, 2015. ""Speculative Influence Network" during financial bubbles: application to Chinese Stock Markets," Papers 1510.08162, arXiv.org.
    18. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    19. Li Lin & Didier Sornette, 2023. "The inverse Cox-Ingersoll-Ross process for parsimonious financial price modeling," Papers 2302.11423, arXiv.org, revised Jun 2023.
    20. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.

    More about this item

    Keywords

    Financial crashes; super-exponential growth; illusion of certainty; contagion; housing-bubble.;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eei:rpaper:eeri_rp_2009_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Julia van Hove (email available below). General contact details of provider: https://edirc.repec.org/data/eeriibe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.