IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v33y2014icp210-225.html
   My bibliography  Save this article

The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals

Author

Listed:
  • Lin, L.
  • Ren, R.E.
  • Sornette, D.

Abstract

Using the concept of the stochastic discount factor with critical behavior, we present a self-consistent model for explosive financial bubbles, which combines a mean-reverting volatility process and a stochastic conditional return which reflects nonlinear positive feedbacks and continuous updates of the investors' beliefs and sentiments. The conditional expected returns exhibit faster-than-exponential acceleration decorated by accelerating oscillations, called “log-periodic power law” (LPPL). Tests on residuals show a remarkable, low rate (0.2%) of false positives when applied to a GARCH benchmark. When tested on the S&P500 US index from Jan. 3, 1950 to Nov. 21, 2008, the model correctly identifies the bubbles ending in Oct. 1987, in Oct. 1997, and in Aug. 1998 and the ITC bubble ending on the first quarter of 2000. Different unit-root tests confirm the high relevance of the model specification. Our model also provides a diagnostic for the duration of bubbles: applied to the period before the Oct. 1987 crash, there is clear evidence that the bubble started at least 4years earlier. We confirm the validity and universality of the volatility-confined LPPL model on seven other major bubbles that have occurred in the World in the last two decades. Using Bayesian inference, we find a very strong statistical preference for our model compared with a standard benchmark, in contradiction with Chang and Feigenbaum (2006) which used a unit-root model for residuals.

Suggested Citation

  • Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
  • Handle: RePEc:eee:finana:v:33:y:2014:i:c:p:210-225
    DOI: 10.1016/j.irfa.2014.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521914000350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2014.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    2. Peter Cauwels & Didier Sornette, 2012. "The Illusion of the Perpetual Money Machine," Swiss Finance Institute Research Paper Series 12-40, Swiss Finance Institute.
    3. Didier Sornette & Ryan Woodard, & Wanfeng Yan & Wei-Xing Zhou, "undated". "Clarifications to Questions and Criticisms on the Johansen-Ledoit-Sornette bubble Model," Working Papers ETH-RC-11-004, ETH Zurich, Chair of Systems Design.
    4. Wanfeng Yan & Ryan Woodard & Didier Sornette, "undated". "The Role of diversification risk in financial bubbles," Working Papers ETH-RC-11-003, ETH Zurich, Chair of Systems Design.
    5. Olivier J. Blanchard & Mark W. Watson, 1982. "Bubbles, Rational Expectations and Financial Markets," NBER Working Papers 0945, National Bureau of Economic Research, Inc.
    6. George Chang & James Feigenbaum, 2006. "A Bayesian analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 15-36.
    7. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    8. L. Lin & D. Sornette, 2013. "Diagnostics of rational expectation financial bubbles with stochastic mean-reverting termination times," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 344-365, May.
    9. Jiang, Zhi-Qiang & Zhou, Wei-Xing & Sornette, Didier & Woodard, Ryan & Bastiaensen, Ken & Cauwels, Peter, 2010. "Bubble diagnosis and prediction of the 2005-2007 and 2008-2009 Chinese stock market bubbles," Journal of Economic Behavior & Organization, Elsevier, vol. 74(3), pages 149-162, June.
    10. Hüsler, A. & Sornette, D. & Hommes, C.H., 2013. "Super-exponential bubbles in lab experiments: Evidence for anchoring over-optimistic expectations on price," Journal of Economic Behavior & Organization, Elsevier, vol. 92(C), pages 304-316.
    11. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    12. W. -X. Zhou & D. Sornette, 2003. "Renormalization Group Analysis of the 2000-2002 anti-bubble in the US S&P 500 index: Explanation of the hierarchy of 5 crashes and Prediction," Papers physics/0301023, arXiv.org, revised Aug 2003.
    13. Wei-Xing Zhou & Didier Sornette, 2003. "Nonparametric Analyses Of Log-Periodic Precursors To Financial Crashes," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1107-1125.
    14. Vladimir Filimonov & Didier Sornette, "undated". "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Working Papers ETH-RC-11-002, ETH Zurich, Chair of Systems Design.
    15. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    16. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    17. Wei-Xing Zhou & Didier Sornette, 2002. "Statistical Significance Of Periodicity And Log-Periodicity With Heavy-Tailed Correlated Noise," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 137-169.
    18. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    19. Blanchard, Olivier Jean, 1979. "Speculative bubbles, crashes and rational expectations," Economics Letters, Elsevier, vol. 3(4), pages 387-389.
    20. Sornette, D & Takayasu, H & Zhou, W.-X, 2003. "Finite-time singularity signature of hyperinflation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(3), pages 492-506.
    21. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    22. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    23. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2005. "Thy Neighbor's Portfolio: Word‐of‐Mouth Effects in the Holdings and Trades of Money Managers," Journal of Finance, American Finance Association, vol. 60(6), pages 2801-2824, December.
    24. J. A. Feigenbaum, 2001. "More on a statistical analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 527-532.
    25. D. Sornette & J. V. Andersen, 2001. "A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles," Papers cond-mat/0104341, arXiv.org, revised Apr 2002.
    26. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
    27. Didier SORNETTE & Ryan WOODARD, 2009. "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Swiss Finance Institute Research Paper Series 09-15, Swiss Finance Institute.
    28. Graf v. Bothmer, Hans-Christian & Meister, Christian, 2003. "Predicting critical crashes? A new restriction for the free variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 539-547.
    29. Zhou, Wei-Xing & Sornette, Didier, 2009. "A case study of speculative financial bubbles in the South African stock market 2003–2006," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 869-880.
    30. Ide, Kayo & Sornette, Didier, 2002. "Oscillatory finite-time singularities in finance, population and rupture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 307(1), pages 63-106.
    31. Sornette, Didier & Zhou, Wei-Xing, 2006. "Predictability of large future changes in major financial indices," International Journal of Forecasting, Elsevier, vol. 22(1), pages 153-168.
    32. Vladimir Filimonov & Didier Sornette, 2011. "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Papers 1108.0099, arXiv.org, revised Jun 2013.
    33. Zhou, Wei-Xing & Sornette, Didier, 2003. "Renormalization group analysis of the 2000–2002 anti-bubble in the US S&P500 index: explanation of the hierarchy of five crashes and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(3), pages 584-604.
    34. J.A. Feigenbaum, 2001. "A statistical analysis of log-periodic precursors to financial crashes-super-," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 346-360, March.
    35. Granger, Clive W J & Hallman, Jeffrey J, 1991. "Long Memory Series with Attractors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 53(1), pages 11-26, February.
    36. Anders Johansen & Didier Sornette, 1999. "Critical Crashes," Papers cond-mat/9901035, arXiv.org.
    37. Johansen, Anders, 2004. "Origin of crashes in three US stock markets: shocks and bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 135-142.
    38. D. Sornette & R. Woodard, "undated". "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Working Papers CCSS-09-003, ETH Zurich, Chair of Systems Design.
    39. Nishant Dass & Massimo Massa & Rajdeep Patgiri, 2008. "Mutual Funds and Bubbles: The Surprising Role of Contractual Incentives," The Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 51-99, January.
    40. D. Sornette & J. V. Andersen, 2002. "A Nonlinear Super-Exponential Rational Model Of Speculative Financial Bubbles," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 171-187.
    41. Sornette, Didier & Johansen, Anders, 1998. "A hierarchical model of financial crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 581-598.
    42. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
    43. D. Sornette & P. Cauwels, 2012. "The Illusion of the Perpetual Money Machine," Papers 1212.2833, arXiv.org.
    44. Didier Sornette & Ryan Woodard, 2009. "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Papers 0905.0220, arXiv.org.
    45. Anders Johansen, 2004. "Origin of Crashes in 3 US stock markets: Shocks and Bubbles," Papers cond-mat/0401210, arXiv.org.
    46. Drożdż, S. & Grümmer, F. & Ruf, F. & Speth, J., 2003. "Log-periodic self-similarity: an emerging financial law?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 174-182.
    47. Anders Johansen & Didier Sornette, 2001. "Bubbles And Anti-Bubbles In Latin-American, Asian And Western Stock Markets: An Empirical Study," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(06), pages 853-920.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    2. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    3. Li Lin & Didier Sornette, 2015. ""Speculative Influence Network" during financial bubbles: application to Chinese Stock Markets," Papers 1510.08162, arXiv.org.
    4. Li Lin & Didier Sornette, 2018. "“Speculative Influence Network” during financial bubbles: application to Chinese stock markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 385-431, July.
    5. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    6. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    7. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    8. Li Lin & Didier Sornette, 2009. "Diagnostics of Rational Expectation Financial Bubbles with Stochastic Mean-Reverting Termination Times," Papers 0911.1921, arXiv.org.
    9. Kristoffer Pons Bertelsen, 2019. "Comparing Tests for Identification of Bubbles," CREATES Research Papers 2019-16, Department of Economics and Business Economics, Aarhus University.
    10. Sornette, Didier & Zhou, Wei-Xing, 2006. "Predictability of large future changes in major financial indices," International Journal of Forecasting, Elsevier, vol. 22(1), pages 153-168.
    11. Zhou, Wei-Xing & Sornette, Didier, 2003. "Evidence of a worldwide stock market log-periodic anti-bubble since mid-2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(3), pages 543-583.
    12. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    13. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    14. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    15. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    16. Zhou, Wei-Xing & Sornette, Didier, 2009. "A case study of speculative financial bubbles in the South African stock market 2003–2006," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 869-880.
    17. Diego Ardila & Dorsa Sanadgol & Peter Cauwels & Didier Sornette, 2017. "Identification and critical time forecasting of real estate bubbles in the USA," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 613-631, April.
    18. Vakhtina, Elena & Wosnitza, Jan Henrik, 2015. "Capital market based warning indicators of bank runs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 304-320.
    19. Qun Zhang & Qunzhi Zhang & Didier Sornette, 2016. "Early Warning Signals of Financial Crises with Multi-Scale Quantile Regressions of Log-Periodic Power Law Singularities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-43, November.
    20. Jerome L Kreuser & Didier Sornette, 2017. "Super-Exponential RE Bubble Model with Efficient Crashes," Swiss Finance Institute Research Paper Series 17-33, Swiss Finance Institute.

    More about this item

    Keywords

    Rational bubbles; Mean reversal; Positive feedbacks; Finite-time singularity; Super-exponential growth; Bayesian analysis; Log-periodic power law; Stochastic discount factor;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:33:y:2014:i:c:p:210-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.