IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i17p3698-3707.html
   My bibliography  Save this article

A stable and robust calibration scheme of the log-periodic power law model

Author

Listed:
  • Filimonov, V.
  • Sornette, D.

Abstract

We present a simple transformation of the formulation of the log-periodic power law formula of the Johansen–Ledoit–Sornette (JLS) model of financial bubbles that reduces it to a function of only three nonlinear parameters. The transformation significantly decreases the complexity of the fitting procedure and improves its stability tremendously because the modified cost function is now characterized by good smooth properties with in general a single minimum in the case where the model is appropriate to the empirical data. We complement the approach with an additional subordination procedure that slaves two of the nonlinear parameters to the most crucial nonlinear parameter, the critical time tc, defined in the JLS model as the end of the bubble and the most probable time for a crash to occur. This further decreases the complexity of the search and provides an intuitive representation of the results of the calibration. With our proposed methodology, metaheuristic searches are not longer necessary and one can resort solely to rigorous controlled local search algorithms, leading to a dramatic increase in efficiency. Empirical tests on the Shanghai Composite index (SSE) from January 2007 to March 2008 illustrate our findings.

Suggested Citation

  • Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:17:p:3698-3707
    DOI: 10.1016/j.physa.2013.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113003087
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clark, Andrew, 2004. "Evidence of log-periodicity in corporate bond spreads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 585-595.
    2. Stanislaw Drozdz & Jaroslaw Kwapien & Pawel Oswiecimka & Josef Speth, 2008. "Current log-periodic view on future world market development," Papers 0802.4043, arXiv.org, revised Jun 2008.
    3. J. Barkley Rosser Jr. (ed.), 2009. "Handbook of Research on Complexity," Books, Edward Elgar Publishing, number 3625.
    4. Didier Sornette & Wei-Xing Zhou, 2002. "The US 2000-2002 market descent: How much longer and deeper?," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 468-481.
    5. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    6. Zhou, Wei-Xing & Sornette, Didier, 2008. "Analysis of the real estate market in Las Vegas: Bubble, seasonal patterns, and prediction of the CSW indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 243-260.
    7. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    8. Zhou, Wei-Xing & Sornette, Didier, 2003. "2000–2003 real estate bubble in the UK but not in the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 249-263.
    9. Graf v. Bothmer, Hans-Christian & Meister, Christian, 2003. "Predicting critical crashes? A new restriction for the free variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 539-547.
    10. Zhou, Wei-Xing & Sornette, Didier, 2009. "A case study of speculative financial bubbles in the South African stock market 2003–2006," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 869-880.
    11. Sornette, Didier & Zhou, Wei-Xing, 2006. "Predictability of large future changes in major financial indices," International Journal of Forecasting, Elsevier, vol. 22(1), pages 153-168.
    12. J.A. Feigenbaum, 2001. "A statistical analysis of log-periodic precursors to financial crashes-super-," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 346-360, March.
    13. Anders Johansen & Didier Sornette, 1999. "Critical Crashes," Papers cond-mat/9901035, arXiv.org.
    14. Jiang, Zhi-Qiang & Zhou, Wei-Xing & Sornette, Didier & Woodard, Ryan & Bastiaensen, Ken & Cauwels, Peter, 2010. "Bubble diagnosis and prediction of the 2005-2007 and 2008-2009 Chinese stock market bubbles," Journal of Economic Behavior & Organization, Elsevier, vol. 74(3), pages 149-162, June.
    15. D. Sornette & R. Woodard, "undated". "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Working Papers CCSS-09-003, ETH Zurich, Chair of Systems Design.
    16. A. Johansen & D. Sornette, 1999. "Financial ``Anti-Bubbles'': Log-Periodicity in Gold and Nikkei collapses," Papers cond-mat/9901268, arXiv.org.
    17. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    18. Matsushita, Raul & da Silva, Sergio & Figueiredo, Annibal & Gleria, Iram, 2006. "Log-periodic crashes revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 331-335.
    19. Anders Johansen & Didier Sornette, 2010. "Shocks, Crashes and Bubbles in Financial Markets," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 53(2), pages 201-253.
    20. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    21. Zhou, Wei-Xing & Sornette, Didier, 2006. "Is there a real-estate bubble in the US?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 297-308.
    22. George Chang & James Feigenbaum, 2008. "Detecting log-periodicity in a regime-switching model of stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 723-738.
    23. Gnaciński, Piotr & Makowiec, Danuta, 2004. "Another type of log-periodic oscillations on Polish stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 322-325.
    24. J. Barkley Rosser, 2008. "Econophysics And Economic Complexity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 745-760.
    25. A. Johansen & D. Sornette, 1999. "Financial "Anti-Bubbles": Log-Periodicity In Gold And Nikkei Collapses," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 563-575.
    26. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    2. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    3. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    4. Vakhtina, Elena & Wosnitza, Jan Henrik, 2015. "Capital market based warning indicators of bank runs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 304-320.
    5. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    6. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    7. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    8. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2017. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. Part 2," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 45, pages 5-28.
    9. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    10. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    11. Fry, John, 2012. "Exogenous and endogenous crashes as phase transitions in complex financial systems," MPRA Paper 36202, University Library of Munich, Germany.
    12. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Why credit risk markets are predestined for exhibiting log-periodic power law structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 427-449.
    13. Jiang, Zhi-Qiang & Zhou, Wei-Xing & Sornette, Didier & Woodard, Ryan & Bastiaensen, Ken & Cauwels, Peter, 2010. "Bubble diagnosis and prediction of the 2005-2007 and 2008-2009 Chinese stock market bubbles," Journal of Economic Behavior & Organization, Elsevier, vol. 74(3), pages 149-162, June.
    14. Song, Ruiqiang & Shu, Min & Zhu, Wei, 2022. "The 2020 global stock market crash: Endogenous or exogenous?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    15. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    16. Wanfeng Yan & Edgar van Tuyll van Serooskerken, 2015. "Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-15, September.
    17. John Fry, 2014. "Bubbles, shocks and elementary technical trading strategies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(1), pages 1-13, January.
    18. Vladimir Filimonov & Didier Sornette, "undated". "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Working Papers ETH-RC-11-002, ETH Zurich, Chair of Systems Design.
    19. Vladimir Filimonov & Didier Sornette, 2011. "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Papers 1108.0099, arXiv.org, revised Jun 2013.
    20. Ruiqiang Song & Min Shu & Wei Zhu, 2021. "The 2020 Global Stock Market Crash: Endogenous or Exogenous?," Papers 2101.00327, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:17:p:3698-3707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.