IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0508005.html
   My bibliography  Save this paper

Log-Periodic Crashes Revisited

Author

Listed:
  • Raul Matsushita

    (University of Brasilia)

  • Iram Gleria

    (Federal University of Alagoas)

  • Annibal Figueiredo

    (University of Brasilia)

  • Sergio Da Silva

    (Federal University of Santa Catarina)

Abstract

We revisit the finding that crashes can be deterministic and governed by log-periodic formulas [D. Sornette, A. Johansen, Significance of log-periodic precursors to financial crashes, Quant. Finance 1 (2001) 452–471; D. Sornette, W.X. Zhou, The US 2000–2002 market descent: how much longer and deeper?, Quant. Finance 2 (2002) 468–481]. One- and two-harmonic equations are usually employed to fit daily data during bubble episodes. But a three-harmonics has been shown to fit anti-bubbles [A. Johansen, D. Sornette, Financial “anti-bubbles”: log-periodicity in gold and Nikkei collapses, Int. J. Mod. Phys. C 10 (1999) 563–575]. Here we show that the three-harmonic formula can work for bubble episodes as well as anti-bubbles. This is illustrated with daily data from the Brazilian real-US dollar exchange rate. And we also show that the three-harmonics can fit an intraday data set from that foreign exchange rate.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Raul Matsushita & Iram Gleria & Annibal Figueiredo & Sergio Da Silva, 2005. "Log-Periodic Crashes Revisited," Finance 0508005, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0508005
    Note: Type of Document - pdf
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0508/0508005.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    2. Didier Sornette & Wei-Xing Zhou, 2002. "The US 2000-2002 market descent: How much longer and deeper?," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 468-481.
    3. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    4. A. Johansen & D. Sornette, 1999. "Financial ``Anti-Bubbles'': Log-Periodicity in Gold and Nikkei collapses," Papers cond-mat/9901268, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Lin & Didier Sornette, 2018. "“Speculative Influence Network” during financial bubbles: application to Chinese stock markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 385-431, July.
    2. Pawel Dlotko & Simon Rudkin, 2019. "The Topology of Time Series: Improving Recession Forecasting from Yield Spreads," Working Papers 2019-02, Swansea University, School of Management.
    3. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    4. Cajueiro, Daniel O. & Tabak, Benjamin M. & Werneck, Filipe K., 2009. "Can we predict crashes? The case of the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1603-1609.
    5. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    6. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    7. Matsushita, Raul & Brandão, Helena & Nobre, Iuri & Da Silva, Sergio, 2024. "Differential entropy estimation with a Paretian kernel: Tail heaviness and smoothing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    8. Li Lin & Didier Sornette, 2015. ""Speculative Influence Network" during financial bubbles: application to Chinese Stock Markets," Papers 1510.08162, arXiv.org.
    9. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    10. Matsushita, Raul & Figueiredo, Annibal & Da Silva, Sergio, 2012. "A suggested statistical test for measuring bivariate nonlinear dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4891-4898.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    2. A. Johansen & D. Sornette, 2002. "Endogenous versus Exogenous Crashes in Financial Markets," Papers cond-mat/0210509, arXiv.org.
    3. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    4. Hans-Christian Graf v. Bothmer, 2003. "Significance of log-periodic signatures in cumulative noise," Papers cond-mat/0302507, arXiv.org, revised May 2003.
    5. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    6. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    7. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    8. Didier Sornette & Wei-Xing Zhou, 2005. "Non-parametric determination of real-time lag structure between two time series: the 'optimal thermal causal path' method," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 577-591.
    9. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    10. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    11. Wei-Xing Zhou & Didier Sornette, 2003. "Nonparametric Analyses Of Log-Periodic Precursors To Financial Crashes," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1107-1125.
    12. Song, Ruiqiang & Shu, Min & Zhu, Wei, 2022. "The 2020 global stock market crash: Endogenous or exogenous?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    13. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
    14. Sornette, Didier & Zhou, Wei-Xing, 2004. "Evidence of fueling of the 2000 new economy bubble by foreign capital inflow: implications for the future of the US economy and its stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 412-440.
    15. Boon Kin Teh & Siew Ann Cheong, 2016. "The Asian Correction Can Be Quantitatively Forecasted Using a Statistical Model of Fusion-Fission Processes," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-13, October.
    16. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 'COVID' Crash of the 2020 U.S. Stock Market," Papers 2101.03625, arXiv.org.
    17. Sornette, Didier & Zhou, Wei-Xing, 2006. "Predictability of large future changes in major financial indices," International Journal of Forecasting, Elsevier, vol. 22(1), pages 153-168.
    18. Zhou, Wei-Xing & Sornette, Didier, 2009. "A case study of speculative financial bubbles in the South African stock market 2003–2006," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 869-880.
    19. Ruiqiang Song & Min Shu & Wei Zhu, 2021. "The 2020 Global Stock Market Crash: Endogenous or Exogenous?," Papers 2101.00327, arXiv.org.
    20. George Chang & James Feigenbaum, 2006. "A Bayesian analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 15-36.

    More about this item

    JEL classification:

    • G - Financial Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0508005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.