IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v364y2006icp331-335.html
   My bibliography  Save this article

Log-periodic crashes revisited

Author

Listed:
  • Matsushita, Raul
  • da Silva, Sergio
  • Figueiredo, Annibal
  • Gleria, Iram

Abstract

We revisit the finding that crashes can be deterministic and governed by log-periodic formulas [D. Sornette, A. Johansen, Significance of log-periodic precursors to financial crashes, Quant. Finance 1 (2001) 452–471; D. Sornette, W.X. Zhou, The US 2000–2002 market descent: how much longer and deeper?, Quant. Finance 2 (2002) 468–481]. One- and two-harmonic equations are usually employed to fit daily data during bubble episodes. But a three-harmonics has been shown to fit anti-bubbles [A. Johansen, D. Sornette, Financial “anti-bubbles”: log-periodicity in gold and Nikkei collapses, Int. J. Mod. Phys. C 10 (1999) 563–575]. Here we show that the three-harmonic formula can work for bubble episodes as well as anti-bubbles. This is illustrated with daily data from the Brazilian real-US dollar exchange rate. And we also show that the three-harmonics can fit an intraday data set from that foreign exchange rate.

Suggested Citation

  • Matsushita, Raul & da Silva, Sergio & Figueiredo, Annibal & Gleria, Iram, 2006. "Log-periodic crashes revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 331-335.
  • Handle: RePEc:eee:phsmap:v:364:y:2006:i:c:p:331-335
    DOI: 10.1016/j.physa.2005.08.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105008848
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    2. Didier Sornette & Wei-Xing Zhou, 2002. "The US 2000-2002 market descent: How much longer and deeper?," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 468-481.
    3. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    4. A. Johansen & D. Sornette, 1999. "Financial ``Anti-Bubbles'': Log-Periodicity in Gold and Nikkei collapses," Papers cond-mat/9901268, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    2. Cajueiro, Daniel O. & Tabak, Benjamin M. & Werneck, Filipe K., 2009. "Can we predict crashes? The case of the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1603-1609.
    3. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    4. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    5. Li Lin & Didier Sornette, 2015. ""Speculative Influence Network" during financial bubbles: application to Chinese Stock Markets," Papers 1510.08162, arXiv.org.
    6. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    7. Matsushita, Raul & Figueiredo, Annibal & Da Silva, Sergio, 2012. "A suggested statistical test for measuring bivariate nonlinear dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4891-4898.

    More about this item

    Keywords

    Crashes; Exchange rates; Log-periodicity;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:364:y:2006:i:c:p:331-335. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.