IDEAS home Printed from https://ideas.repec.org/p/swn/wpaper/2019-02.html
   My bibliography  Save this paper

The Topology of Time Series: Improving Recession Forecasting from Yield Spreads

Author

Listed:
  • Pawel Dlotko

    (Mathematics Department, Swansea University)

  • Simon Rudkin

    (School of Management, Swansea University)

Abstract

Recession forecasting ranges from simplistic inference from the inversion of the yield curve to sophisticated models drawing data from across the macroeconomic and nancial spectra. Each has advantages, in simplicity and informativeness respectively, but each su ers for these. Demonstrating how the properties of yield spread time series themselves can foretell of impending recessions we introduce data topology to economics. Through an exploration of the topology of time series we highlight an untapped source of information with the potential to signi cantly improve understanding of the economy without risking the over tting of introducing other variables.

Suggested Citation

  • Pawel Dlotko & Simon Rudkin, 2019. "The Topology of Time Series: Improving Recession Forecasting from Yield Spreads," Working Papers 2019-02, Swansea University, School of Management.
  • Handle: RePEc:swn:wpaper:2019-02
    as

    Download full text from publisher

    File URL: https://rahwebdav.swan.ac.uk/repec/pdf/WP2019-02.pdf
    File Function: First version, 2019
    Download Restriction: no

    References listed on IDEAS

    as
    1. Arturo Estrella & Frederic S. Mishkin, 1996. "The yield curve as a predictor of U.S. recessions," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 2(Jun).
    2. Arturo Estrella & Mary R. Trubin, 2006. "The yield curve as a leading indicator: some practical issues," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 12(Jul).
    3. Stock, James H. & Watson, Mark W., 2014. "Estimating turning points using large data sets," Journal of Econometrics, Elsevier, vol. 178(P2), pages 368-381.
    4. Marian Gidea & Daniel Goldsmith & Yuri Katz & Pablo Roldan & Yonah Shmalo, 2018. "Topological recognition of critical transitions in time series of cryptocurrencies," Papers 1809.00695, arXiv.org.
    5. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    6. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    7. Giusto, Andrea & Piger, Jeremy, 2017. "Identifying business cycle turning points in real time with vector quantization," International Journal of Forecasting, Elsevier, vol. 33(1), pages 174-184.
    8. Marcelle Chauvet & Simon Potter, 2005. "Forecasting recessions using the yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 77-103.
    9. Davig, Troy & Hall, Aaron Smalter, 2019. "Recession forecasting using Bayesian classification," International Journal of Forecasting, Elsevier, vol. 35(3), pages 848-867.
    10. Mishkin, Frederic S., 1990. "What does the term structure tell us about future inflation?," Journal of Monetary Economics, Elsevier, vol. 25(1), pages 77-95, January.
    11. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    12. Frederic S. Mishkin, 1990. "The Information in the Longer Maturity Term Structure about Future Inflation," The Quarterly Journal of Economics, Oxford University Press, vol. 105(3), pages 815-828.
    13. George Chang & James Feigenbaum, 2006. "A Bayesian analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 15-36.
    14. Luca Benzoni & Olena Chyruk & David Kelley, 2018. "Why Does the Yield-Curve Slope Predict Recessions?," Chicago Fed Letter, Federal Reserve Bank of Chicago.
    15. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    16. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    17. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    18. Harvey, Campbell R., 1988. "The real term structure and consumption growth," Journal of Financial Economics, Elsevier, vol. 22(2), pages 305-333, December.
    19. Steven E. Kozlowski & Thaddeus Sim, 2019. "Predicting recessions using trends in the yield spread," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(7), pages 1323-1335, May.
    20. Gregory R. Duffee, 2018. "Expected Inflation and Other Determinants of Treasury Yields," Journal of Finance, American Finance Association, vol. 73(5), pages 2139-2180, October.
    21. repec:hrv:faseco:33192198 is not listed on IDEAS
    22. Jess Benhabib & Stephanie Schmitt-Grohé & Martín Uribe, 2002. "Chaotic Interest-Rate Rules," American Economic Review, American Economic Association, vol. 92(2), pages 72-78, May.
    23. Chen, Nai-Fu, 1991. "Financial Investment Opportunities and the Macroeconomy," Journal of Finance, American Finance Association, vol. 46(2), pages 529-554, June.
    24. George Chang & James Feigenbaum, 2008. "Detecting log-periodicity in a regime-switching model of stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 723-738.
    25. Zidong An & João Tovar Jalles & Prakash Loungani, 2018. "How well do economists forecast recessions?," International Finance, Wiley Blackwell, vol. 21(2), pages 100-121, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pawel Dlotko & Simon Rudkin & Wanling Qiu, 2019. "Topologically Mapping the Macroeconomy," Papers 1911.10476, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:swn:wpaper:2019-02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Syed Shabi-Ul-Hassan). General contact details of provider: http://edirc.repec.org/data/edswauk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.