IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2101.00327.html
   My bibliography  Save this paper

The 2020 Global Stock Market Crash: Endogenous or Exogenous?

Author

Listed:
  • Ruiqiang Song
  • Min Shu
  • Wei Zhu

Abstract

Starting on February 20, 2020, the global stock markets began to suffer the worst decline since the Great Recession in 2008, and the COVID-19 has been widely blamed on the stock market crashes. In this study, we applied the log-periodic power law singularity (LPPLS) methodology based on multilevel time series to unravel the underlying mechanisms of the 2020 global stock market crash by analyzing the trajectories of 10 major stock market indexes from both developed and emergent stock markets, including the S&P 500, DJIA, NASDAQ, FTSE, DAX, NIKKEI, CSI 300, HSI, BSESN, and BOVESPA. In order to effectively distinguish between endogenous crash and exogenous crash, we proposed using the LPPLS confidence indicator as a classification proxy. The results show that the apparent LPPLS bubble patterns of the super-exponential increase, corrected by the accelerating logarithm-periodic oscillations, have indeed presented in the price trajectories of the seven indexes: S&P 500, DJIA, NASDAQ, DAX, CSI 300, BSESN, and BOVESPA, indicating that the large positive bubbles have formed endogenously prior to the 2020 stock market crash, and the subsequent crashes for the seven indexes are endogenous, stemming from the increasingly systemic instability of the stock markets, while the well-known external shocks such as the COVID-19 pandemic etc. only acted as sparks during the 2020 global stock market crash. In contrast, the obvious signatures of the LPPLS model have not been observed in the price trajectories of the three remaining indexes: FTSE, NIKKEI, and HSI, signifying that the crashes in these three indexes are exogenous, stemming from external shocks. The novel classification method of crash types proposed in this study can also be used to analyze regime changes of any price trajectories in global financial markets.

Suggested Citation

  • Ruiqiang Song & Min Shu & Wei Zhu, 2021. "The 2020 Global Stock Market Crash: Endogenous or Exogenous?," Papers 2101.00327, arXiv.org.
  • Handle: RePEc:arx:papers:2101.00327
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2101.00327
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    2. Didier SORNETTE & Guilherme DEMOS & Zhang QUN & Peter CAUWELS & Vladimir FILIMONOV & Qunzhi ZHANG, 2015. "Real-Time Prediction and Post-Mortem Analysis of the Shanghai 2015 Stock Market Bubble and Crash," Swiss Finance Institute Research Paper Series 15-32, Swiss Finance Institute.
    3. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    4. Ide, Kayo & Sornette, Didier, 2002. "Oscillatory finite-time singularities in finance, population and rupture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 307(1), pages 63-106.
    5. Riza Demirer & Guilherme Demos & Rangan Gupta & Didier Sornette, 2019. "On the predictability of stock market bubbles: evidence from LPPLS confidence multi-scale indicators," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 843-858, May.
    6. Vladimir Filimonov & Didier Sornette, 2011. "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Papers 1108.0099, arXiv.org, revised Jun 2013.
    7. Olivier J. Blanchard & Mark W. Watson, 1982. "Bubbles, Rational Expectations and Financial Markets," NBER Working Papers 0945, National Bureau of Economic Research, Inc.
    8. Didier Sornette & Wei-Xing Zhou, 2002. "The US 2000-2002 market descent: How much longer and deeper?," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 468-481.
    9. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    10. G. Demos & D. Sornette, 2017. "Birth or burst of financial bubbles: which one is easier to diagnose?," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 657-675, May.
    11. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    12. Li, Chong, 2017. "Log-periodic view on critical dates of the Chinese stock market bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 305-311.
    13. Sornette, Didier & Johansen, Anders, 1997. "Large financial crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 411-422.
    14. Zhou, Wei-Xing & Sornette, Didier, 2008. "Analysis of the real estate market in Las Vegas: Bubble, seasonal patterns, and prediction of the CSW indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 243-260.
    15. Min Shu & Wei Zhu, 2019. "Diagnosis and Prediction of the 2015 Chinese Stock Market Bubble," Papers 1905.09633, arXiv.org, revised Jun 2019.
    16. Anders Johansen & Didier Sornette, 2010. "Shocks, Crashes and Bubbles in Financial Markets," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 53(2), pages 201-253.
    17. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    18. Wanfeng Yan & Ryan Woodard & Didier Sornette, 2010. "Diagnosis and Prediction of Tipping Points in Financial Markets: Crashes and Rebounds," Papers 1001.0265, arXiv.org, revised Feb 2010.
    19. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    20. Vladimir Filimonov & Didier Sornette, "undated". "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Working Papers ETH-RC-11-002, ETH Zurich, Chair of Systems Design.
    21. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    22. Zhou, Wei-Xing & Sornette, Didier, 2003. "2000–2003 real estate bubble in the UK but not in the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 249-263.
    23. Rui Albuquerque & Yrjo Koskinen & Shuai Yang & Chendi Zhang, 0. "Resiliency of Environmental and Social Stocks: An Analysis of the Exogenous COVID-19 Market Crash," Review of Corporate Finance Studies, Oxford University Press, vol. 9(3), pages 593-621.
    24. Rui Albuquerque & Yrjo Koskinen & Shuai Yang & Chendi Zhang, 2020. "Resiliency of Environmental and Social Stocks: An Analysis of the Exogenous COVID-19 Market Crash," Review of Corporate Finance Studies, Oxford University Press, vol. 9(3), pages 593-621.
    25. Zhou, Wei-Xing & Sornette, Didier, 2006. "Is there a real-estate bubble in the US?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 297-308.
    26. Jane E. Ihrig & Gretchen C. Weinbach & Scott A. Wolla, 2020. "COVID-19’s Effects on the Economy and the Fed’s Response," Page One Economics Newsletter, Federal Reserve Bank of St. Louis, August.
    27. Graf v. Bothmer, Hans-Christian & Meister, Christian, 2003. "Predicting critical crashes? A new restriction for the free variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 539-547.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 'COVID' Crash of the 2020 U.S. Stock Market," Papers 2101.03625, arXiv.org.
    2. Shu, Min & Song, Ruiqiang & Zhu, Wei, 2021. "The ‘COVID’ crash of the 2020 U.S. Stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Ruiqiang & Shu, Min & Zhu, Wei, 2022. "The 2020 global stock market crash: Endogenous or exogenous?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    2. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 'COVID' Crash of the 2020 U.S. Stock Market," Papers 2101.03625, arXiv.org.
    3. Shu, Min & Song, Ruiqiang & Zhu, Wei, 2021. "The ‘COVID’ crash of the 2020 U.S. Stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    4. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    5. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    6. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    7. Shu, Min & Zhu, Wei, 2020. "Real-time prediction of Bitcoin bubble crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    8. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    9. Bikramaditya Ghosh & Spyros Papathanasiou & Nikita Ramchandani & Dimitrios Kenourgios, 2021. "Diagnosis and Prediction of IIGPS’ Countries Bubble Crashes during BREXIT," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
    10. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    11. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2017. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. Part 2," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 45, pages 5-28.
    12. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    13. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    14. Westphal, Rebecca & Sornette, Didier, 2020. "Market impact and performance of arbitrageurs of financial bubbles in an agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 171(C), pages 1-23.
    15. Rebecca Westphal & Didier Sornette, 2019. "Market Impact and Performance of Arbitrageurs of Financial Bubbles in An Agent-Based Model," Swiss Finance Institute Research Paper Series 19-29, Swiss Finance Institute.
    16. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 2021 Bitcoin Bubbles and Crashes—Detection and Classification," Stats, MDPI, vol. 4(4), pages 1-21, November.
    17. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    18. Riza Demirer & Guilherme Demos & Rangan Gupta & Didier Sornette, 2019. "On the predictability of stock market bubbles: evidence from LPPLS confidence multi-scale indicators," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 843-858, May.
    19. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    20. G. Demos & D. Sornette, 2017. "Birth or burst of financial bubbles: which one is easier to diagnose?," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 657-675, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.00327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.