IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v41y2012icp402-411.html
   My bibliography  Save this item

Design incentives to increase vehicle size created from the U.S. footprint-based fuel economy standards

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Greene, David & Hossain, Anushah & Hofmann, Julia & Helfand, Gloria & Beach, Robert, 2018. "Consumer willingness to pay for vehicle attributes: What do we Know?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 258-279.
  2. Antonio M. Bento & Mark R. Jacobsen & Christopher R. Knittel & Arthur A. van Benthem, 2020. "Estimating the Costs and Benefits of Fuel-Economy Standards," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 1(1), pages 129-157.
  3. Klier, Thomas & Linn, Joshua, 2013. "Technological Change, Vehicle Characteristics, and the Opportunity Costs of Fuel Economy Standards," RFF Working Paper Series dp-13-40, Resources for the Future.
  4. Koichiro Ito & James M. Sallee, 2018. "The Economics of Attribute-Based Regulation: Theory and Evidence from Fuel Economy Standards," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 319-336, May.
  5. Mathias Reynaert & James M. Sallee, 2021. "Who Benefits When Firms Game Corrective Policies?," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 372-412, February.
  6. Doremus, Jacqueline & Helfand, Gloria & Liu, Changzheng & Donahue, Marie & Kahan, Ari & Shelby, Michael, 2019. "Simpler is better: Predicting consumer vehicle purchases in the short run," Energy Policy, Elsevier, vol. 129(C), pages 1404-1415.
  7. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Un, Puikei & Zhou, Yu & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, Elsevier, vol. 69(C), pages 247-257.
  8. Lutsey, Nicholas, 2012. "Regulatory and technology lead-time: The case of US automobile greenhouse gas emission standards," Transport Policy, Elsevier, vol. 21(C), pages 179-190.
  9. Mathias Reynaert, 2021. "Abatement Strategies and the Cost of Environmental Regulation: Emission Standards on the European Car Market," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(1), pages 454-488.
  10. McConnell, Virginia, 2013. "The New CAFE Standards: Are They Enough on Their Own?," RFF Working Paper Series dp-13-14, Resources for the Future.
  11. Linn, Joshua, 2014. "Explaining the Adoption of Diesel Fuel Passenger Cars in Europe," Discussion Papers dp-14-08, Resources For the Future.
  12. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
  13. Liu, Yizao, 2017. "Safer or cheaper? Traffic safety, vehicle choices and the effect of new corporate average fuel economy standards," Resource and Energy Economics, Elsevier, vol. 49(C), pages 99-112.
  14. Kaplow, Louis, 2019. "Optimal regulation with exemptions," International Journal of Industrial Organization, Elsevier, vol. 66(C), pages 1-39.
  15. Kellogg, Ryan, 2018. "Gasoline price uncertainty and the design of fuel economy standards," Journal of Public Economics, Elsevier, vol. 160(C), pages 14-32.
  16. Takahiko Kiso, 2019. "Evaluating New Policy Instruments of the Corporate Average Fuel Economy Standards: Footprint, Credit Transferring, and Credit Trading," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 445-476, February.
  17. Wang, Sinan & Chen, Kangda & Zhao, Fuquan & Hao, Han, 2019. "Technology pathways for complying with Corporate Average Fuel Consumption regulations up to 2030: A case study of China," Applied Energy, Elsevier, vol. 241(C), pages 257-277.
  18. Dou, Xiaoya & Linn, Joshua, 2020. "How do US passenger vehicle fuel economy standards affect new vehicle purchases?," Journal of Environmental Economics and Management, Elsevier, vol. 102(C).
  19. Linn, Joshua, "undated". "Explaining the Adoption of Diesel Fuel Passenger Cars in Europe," RFF Working Paper Series dp-14-08-rev, Resources for the Future.
  20. Haaf, C. Grace & Morrow, W. Ross & Azevedo, Inês M.L. & Feit, Elea McDonnell & Michalek, Jeremy J., 2016. "Forecasting light-duty vehicle demand using alternative-specific constants for endogeneity correction versus calibration," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 182-210.
  21. Mitsuki Kaneko, 2019. "A Lifecycle Analysis of the Corporate Average Fuel Economy Standards in Japan," Energies, MDPI, vol. 12(4), pages 1-14, February.
  22. Klier, Thomas & Linn, Joshua, 2016. "The effect of vehicle fuel economy standards on technology adoption," Journal of Public Economics, Elsevier, vol. 133(C), pages 41-63.
  23. Marcus Brandenburg & Tobias Rebs, 2015. "Sustainable supply chain management: a modeling perspective," Annals of Operations Research, Springer, vol. 229(1), pages 213-252, June.
  24. Sheldon, Tamara L. & Dua, Rubal, 2021. "How responsive is Saudi new vehicle fleet fuel economy to fuel-and vehicle-price policy levers?," Energy Economics, Elsevier, vol. 97(C).
  25. Jenn, Alan & Azevedo, Inês & Michalek, Jeremy Joseph, 2019. "Alternative-Fuel-Vehicle Policy Interactions Increase U.S. Greenhouse Gas Emissions," OSF Preprints n69tp, Center for Open Science.
  26. Ullman, Darin F., 2016. "A difficult road ahead: Fleet fuel economy, footprint-based CAFE compliance, and manufacturer incentives," Energy Economics, Elsevier, vol. 57(C), pages 94-105.
  27. Yip, Arthur H.C. & Michalek, Jeremy J. & Whitefoot, Kate S., 2018. "On the implications of using composite vehicles in choice model prediction," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 163-188.
  28. Hao, Han & Wang, Sinan & Liu, Zongwei & Zhao, Fuquan, 2016. "The impact of stepped fuel economy targets on automaker's light-weighting strategy: The China case," Energy, Elsevier, vol. 94(C), pages 755-765.
  29. Louis Kaplow, 2017. "Optimal Regulation with Exemptions," NBER Working Papers 23887, National Bureau of Economic Research, Inc.
  30. Helfand, Gloria & McWilliams, Michael & Bolon, Kevin & Reichle, Lawrence & Sha, Mandy & Smith, Amanda & Beach, Robert, 2016. "Searching for hidden costs: A technology-based approach to the energy efficiency gap in light-duty vehicles," Energy Policy, Elsevier, vol. 98(C), pages 590-606.
  31. Kangda Chen & Fuquan Zhao & Han Hao & Zongwei Liu & Xinglong Liu, 2021. "Hierarchical Optimization Decision-Making Method to Comply with China’s Fuel Consumption and New Energy Vehicle Credit Regulations," Sustainability, MDPI, vol. 13(14), pages 1-25, July.
  32. Choi, Young-Young & Liu, Yizao & Huang, Ling, 2015. "Safer or Cheaper? Household Safety Concerns, Vehicle Choices, and the Costs of Fuel Economy Standards," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205797, Agricultural and Applied Economics Association.
  33. Damien Sheehan-Connor, 2012. "Life and Death at the CAFE: Predicting the Impact of Fuel Economy Standards on Vehicle Safety," Wesleyan Economics Working Papers 2012-002, Wesleyan University, Department of Economics.
  34. Sen, Burak & Noori, Mehdi & Tatari, Omer, 2017. "Will Corporate Average Fuel Economy (CAFE) Standard help? Modeling CAFE's impact on market share of electric vehicles," Energy Policy, Elsevier, vol. 109(C), pages 279-287.
  35. Tang, Christopher S. & Zhou, Sean, 2012. "Research advances in environmentally and socially sustainable operations," European Journal of Operational Research, Elsevier, vol. 223(3), pages 585-594.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.