IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v84y2016icp182-210.html
   My bibliography  Save this article

Forecasting light-duty vehicle demand using alternative-specific constants for endogeneity correction versus calibration

Author

Listed:
  • Haaf, C. Grace
  • Morrow, W. Ross
  • Azevedo, Inês M.L.
  • Feit, Elea McDonnell
  • Michalek, Jeremy J.

Abstract

We investigate parameter recovery and forecast accuracy implications of incorporating alternative-specific constants (ASCs) in the utility functions of vehicle choice models. We compare two methods of incorporating ASCs: (1) a maximum likelihood estimator that computes ASCs post-hoc as calibration constants (MLE-C) and (2) a generalized method of moments estimator that uses instrumental variables (GMM-IV) to correct for price endogeneity. In a synthetic study we observe significant coefficient bias with MLE-C when the price-ASC correlation (endogeneity) is large. GMM-IV successfully mitigates this bias given valid instruments but exacerbates the bias given invalid instruments. Despite greater coefficient bias, MLE-C yields better forecasts than GMM-IV with valid instruments in most of the cases examined, including most cases where the price-ASC correlation present in the estimation data is absent in the prediction data. In a market study of U.S. midsize sedan sales from 2002 – 2006 the GMM-IV model predicts the 1-year-forward market better, but the MLE-C model predicts the 5-year-forward market better. Including an ASC in predictions by any of the methods proposed improves share forecasts, and assuming that the ASC of each new vehicle matches that of its closest competitor vehicle yields the best long term forecasts. We find evidence that the instruments most frequently used in the automotive demand literature may be invalid.

Suggested Citation

  • Haaf, C. Grace & Morrow, W. Ross & Azevedo, Inês M.L. & Feit, Elea McDonnell & Michalek, Jeremy J., 2016. "Forecasting light-duty vehicle demand using alternative-specific constants for endogeneity correction versus calibration," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 182-210.
  • Handle: RePEc:eee:transb:v:84:y:2016:i:c:p:182-210
    DOI: 10.1016/j.trb.2015.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515002568
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean‐Pierre Dubé & Jeremy T. Fox & Che‐Lin Su, 2012. "Improving the Numerical Performance of Static and Dynamic Aggregate Discrete Choice Random Coefficients Demand Estimation," Econometrica, Econometric Society, vol. 80(5), pages 2231-2267, September.
    2. K. Sudhir, 2001. "Competitive Pricing Behavior in the Auto Market: A Structural Analysis," Marketing Science, INFORMS, vol. 20(1), pages 42-60, January.
    3. Li, Shanjun & Liu, Yanyan & Zhang, Junjie, 2011. "Lose some, save some: Obesity, automobile demand, and gasoline consumption," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 52-66, January.
    4. Che‐Lin Su & Kenneth L. Judd, 2012. "Constrained Optimization Approaches to Estimation of Structural Models," Econometrica, Econometric Society, vol. 80(5), pages 2213-2230, September.
    5. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588.
    6. James Levinsohn & Steven Berry & Ariel Pakes, 1999. "Voluntary Export Restraints on Automobiles: Evaluating a Trade Policy," American Economic Review, American Economic Association, vol. 89(3), pages 400-430, June.
    7. Steven Berry & James Levinsohn & Ariel Pakes, 2004. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 68-105, February.
    8. David L. Greene & K.G. Duleep & Walter McManus, 2004. "Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market," Industrial Organization 0410003, University Library of Munich, Germany.
    9. Min, Jihoon & Azevedo, Inês L. & Michalek, Jeremy & de Bruin, Wändi Bruine, 2014. "Labeling energy cost on light bulbs lowers implicit discount rates," Ecological Economics, Elsevier, vol. 97(C), pages 42-50.
    10. Hunt Allcott & Nathan Wozny, 2014. "Gasoline Prices, Fuel Economy, and the Energy Paradox," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 779-795, December.
    11. Kenneth E. Train & Clifford Winston, 2007. "Vehicle Choice Behavior And The Declining Market Share Of U.S. Automakers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1469-1496, November.
    12. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    13. Adam Copeland & Wendy Dunn & George Hall, 2011. "Inventories and the automobile market," RAND Journal of Economics, RAND Corporation, vol. 42(1), pages 121-149, March.
    14. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    15. Choo, Sangho & Mokhtarian, Patricia L., 2004. "What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 201-222, March.
    16. Whitefoot, Kate S. & Skerlos, Steven J., 2012. "Design incentives to increase vehicle size created from the U.S. footprint-based fuel economy standards," Energy Policy, Elsevier, vol. 41(C), pages 402-411.
    17. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    18. Jenn, Alan & Azevedo, Inês L. & Ferreira, Pedro, 2013. "The impact of federal incentives on the adoption of hybrid electric vehicles in the United States," Energy Economics, Elsevier, vol. 40(C), pages 936-942.
    19. Amil Petrin, 2002. "Quantifying the Benefits of New Products: The Case of the Minivan," Journal of Political Economy, University of Chicago Press, vol. 110(4), pages 705-729, August.
    20. Timothy J. Gilbride & Greg M. Allenby, 2004. "A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules," Marketing Science, INFORMS, vol. 23(3), pages 391-406, October.
    21. Arie Beresteanu & Shanjun Li, 2011. "Gasoline Prices, Government Support, And The Demand For Hybrid Vehicles In The United States," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 161-182, February.
    22. Thomas Klier & Joshua Linn, 2012. "New‐vehicle characteristics and the cost of the Corporate Average Fuel Economy standard," RAND Journal of Economics, RAND Corporation, vol. 43(1), pages 186-213, March.
    23. Hauser, John R & Wernerfelt, Birger, 1990. " An Evaluation Cost Model of Consideration Sets," Journal of Consumer Research, Oxford University Press, vol. 16(4), pages 393-408, March.
    24. Greene, David L. & Patterson, Philip D. & Singh, Margaret & Li, Jia, 2005. "Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy," Energy Policy, Elsevier, vol. 33(6), pages 757-775, April.
    25. K. Sudhir, 2001. "Competitive Pricing Behavior in the US Auto Market: A Structural Analysis," Yale School of Management Working Papers ysm228, Yale School of Management.
    26. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    27. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    28. Vance, Colin & Mehlin, Markus, 2009. "Tax Policy and CO2 Emissions – An Econometric Analysis of the German Automobile Market," Ruhr Economic Papers 89, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    29. Pradeep K. Chintagunta, 2001. "Endogeneity and Heterogeneity in a Probit Demand Model: Estimation Using Aggregate Data," Marketing Science, INFORMS, vol. 20(4), pages 442-456, December.
    30. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:transb:v:109:y:2018:i:c:p:70-89 is not listed on IDEAS
    2. Doremus, Jacqueline & Helfand, Gloria & Liu, Changzheng & Donahue, Marie & Kahan, Ari & Shelby, Michael, 2019. "Simpler is better: Predicting consumer vehicle purchases in the short run," Energy Policy, Elsevier, vol. 129(C), pages 1404-1415.
    3. repec:eee:transb:v:117:y:2018:i:pa:p:412-430 is not listed on IDEAS
    4. repec:eee:transb:v:116:y:2018:i:c:p:163-188 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:84:y:2016:i:c:p:182-210. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.