IDEAS home Printed from https://ideas.repec.org/r/eee/csdana/v55y2011i9p2579-2589.html
   My bibliography  Save this item

Optimal combination forecasts for hierarchical time series

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Moon, Seongmin & Simpson, Andrew & Hicks, Christian, 2013. "The development of a classification model for predicting the performance of forecasting methods for naval spare parts demand," International Journal of Production Economics, Elsevier, vol. 143(2), pages 449-454.
  2. repec:eee:proeco:v:191:y:2017:i:c:p:85-96 is not listed on IDEAS
  3. Carlos A. Medel, 2013. "How informative are in-sample information criteria to forecasting? The case of Chilean GDP," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 50(1), pages 133-161, May.
  4. Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2017. "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 22/17, Monash University, Department of Econometrics and Business Statistics.
  5. Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
  6. repec:eee:insuma:v:75:y:2017:i:c:p:166-179 is not listed on IDEAS
  7. Calderón-Villarreal, Cuauhtémoc & Hernández-Bielma, Leticia, 2016. "Cambio estructural y desindustrialización en México./ Structural Change and desindustrialisation in Mexico," Panorama Económico, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 12(23), pages 29-54, Segundo s.
  8. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
  9. Spithourakis, Georgios P. & Petropoulos, Fotios & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2015. "Amplifying the learning effects via a Forecasting and Foresight Support System," International Journal of Forecasting, Elsevier, vol. 31(1), pages 20-32.
  10. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
  11. Capistrán, Carlos & Constandse, Christian & Ramos-Francia, Manuel, 2010. "Multi-horizon inflation forecasts using disaggregated data," Economic Modelling, Elsevier, vol. 27(3), pages 666-677, May.
  12. repec:eee:transe:v:113:y:2018:i:c:p:225-238 is not listed on IDEAS
  13. repec:eee:energy:v:144:y:2018:i:c:p:1107-1118 is not listed on IDEAS
  14. Marinoiu Cristian, 2016. "Forecasting The Number Of Unemployed People From Romania Using Hierarchical Time Series," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 91-97, August.
  15. Daniel Kosiorowski & Dominik Mielczarek & Jerzy. P. Rydlewski, 2017. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for Day and Night Air Pollution in Silesia Region: A Critical Overview," Papers 1712.03797, arXiv.org.
  16. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
  17. Shanika L Wickramasuriya & George Athanasopoulos & Rob J Hyndman, 2015. "Forecasting hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 15/15, Monash University, Department of Econometrics and Business Statistics.
  18. Han Lin Shang, 2017. "Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 36(1), pages 55-84, February.
  19. Han Lin Shang & Rob J Hyndman, 2016. "Grouped functional time series forecasting: An application to age-specific mortality rates," Monash Econometrics and Business Statistics Working Papers 4/16, Monash University, Department of Econometrics and Business Statistics.
  20. Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017. "Forecasting compositional time series: A state space approach," International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
  21. Cobb, Marcus P A, 2017. "Joint Forecast Combination of Macroeconomic Aggregates and Their Components," MPRA Paper 76556, University Library of Munich, Germany.
  22. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
  23. Carlos Capistrán & Christian Constandse & Manuel Ramos Francia, 2009. "Using Seasonal Models to Forecast Short-Run Inflation in Mexico," Working Papers 2009-05, Banco de México.
  24. Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
  25. repec:eee:ecolet:v:158:y:2017:i:c:p:41-46 is not listed on IDEAS
  26. Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017. "Coherent Probabilistic Forecasts for Hierarchical Time Series," Monash Econometrics and Business Statistics Working Papers 3/17, Monash University, Department of Econometrics and Business Statistics.
  27. repec:gam:jecnmx:v:5:y:2017:i:4:p:44-:d:114224 is not listed on IDEAS
  28. Jing Zeng, 2016. "Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 43(2), pages 415-444, May.
  29. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2017. "Double Functional Median in Robust Prediction of Hierarchical Functional Time Series - An Application to Forecast Internet Service Users Behaviors," Papers 1710.02669, arXiv.org.
  30. repec:eee:ejores:v:263:y:2017:i:2:p:412-418 is not listed on IDEAS
  31. Moon, Seongmin & Hicks, Christian & Simpson, Andrew, 2012. "The development of a hierarchical forecasting method for predicting spare parts demand in the South Korean Navy—A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 794-802.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.