IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v394y2025ics0306261925007834.html
   My bibliography  Save this article

Improving cross-temporal forecasts reconciliation accuracy and utility in energy market

Author

Listed:
  • Abolghasemi, Mahdi
  • Girolimetto, Daniele
  • Di Fonzo, Tommaso

Abstract

Wind power forecasting is essential for managing daily operations at wind farms and enabling market operators to manage power uncertainty effectively in demand planning. Traditional reconciliation methods rely on in-sample errors for forecast reconciliation, which may not generalize well to future performance. Additionally, conventional aggregation structures do not always align with the decision-making requirements in practice, and evaluation metrics often neglect the economic impact of forecast errors. To address these challenges, this paper explores advanced cross-temporal forecasting models and their potential to enhance forecasting accuracy and decisions. First, we propose a novel approach that leverages validation errors, rather than traditional in-sample errors, for covariance matrix estimation and forecast reconciliation. Second, we introduce decision-based aggregation levels for forecasting and reconciliation, where certain horizons are tailored to the specific decisions required in operational settings. Third, we assess model performance not only by traditional accuracy metrics but also by their ability to reduce decision costs, such as penalties in ancillary services. Our results show that using validation errors improves the accuracy by more than 7 % across different temporal levels. We also demonstrate that statistical-based hierarchies tend to adopt less conservative forecasts and reduce revenue losses. On the other hand, decision-based reconciliation offers a more balanced compromise between accuracy and decision cost, while saving computational time by 2 %–3 % for simpler models and up to 93 % for more advanced models, making them attractive for practical use.

Suggested Citation

  • Abolghasemi, Mahdi & Girolimetto, Daniele & Di Fonzo, Tommaso, 2025. "Improving cross-temporal forecasts reconciliation accuracy and utility in energy market," Applied Energy, Elsevier, vol. 394(C).
  • Handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925007834
    DOI: 10.1016/j.apenergy.2025.126053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925007834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.