IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v7y2024i3p39-670d1424102.html
   My bibliography  Save this article

Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach

Author

Listed:
  • Ana Caroline Pinheiro

    (Department of Statistics, Federal University of Bahia, Salvador 40170-115, BA, Brazil
    Statistical Learning Laboratory (SaLLy), Federal University of Bahia, Salvador 40170-115, BA, Brazil)

  • Paulo Canas Rodrigues

    (Department of Statistics, Federal University of Bahia, Salvador 40170-115, BA, Brazil
    Statistical Learning Laboratory (SaLLy), Federal University of Bahia, Salvador 40170-115, BA, Brazil)

Abstract

This study compares reconciliation techniques and base forecast methods to forecast a hierarchical time series of the number of fire spots in Brazil between 2011 and 2022. A three-level hierarchical time series was considered, comprising fire spots in Brazil, disaggregated by biome, and further disaggregated by the municipality. The autoregressive integrated moving average (ARIMA), the exponential smoothing (ETS), and the Prophet models were tested for baseline forecasts, and nine reconciliation approaches, including top-down, bottom-up, middle-out, and optimal combination methods, were considered to ensure coherence in the forecasts. Due to the need for transformation to ensure positive forecasts, two data transformations were considered: the logarithm of the number of fire spots plus one and the square root of the number of fire spots plus 0.5. To assess forecast accuracy, the data were split into training data for estimating model parameters and test data for evaluating forecast accuracy. The results show that the ARIMA model with the logarithmic transformation provides overall better forecast accuracy. The BU, MinT(s), and WLS(v) yielded the best results among the reconciliation techniques.

Suggested Citation

  • Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
  • Handle: RePEc:gam:jstats:v:7:y:2024:i:3:p:39-670:d:1424102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/7/3/39/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/7/3/39/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    3. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    4. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    5. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    6. Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
    7. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    8. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
    9. Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
    10. Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
    11. Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021. "Forecasting Swiss exports using Bayesian forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
    2. Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
    3. Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023. "Optimal reconciliation with immutable forecasts," European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
    6. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
    7. Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
    8. Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    9. Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
    10. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    11. Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
    12. Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
    13. Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
    14. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
    15. Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
    16. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    17. Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
    18. Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
    19. Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
    20. Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:3:p:39-670:d:1424102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.