IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v113y2018icp225-238.html
   My bibliography  Save this article

On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry

Author

Listed:
  • Abouarghoub, Wessam
  • Nomikos, Nikos K.
  • Petropoulos, Fotios

Abstract

We propose the use of hierarchical structures for forecasting freight earnings. Hierarchical time series approaches are applied in the dry-bulk and tanker markets to identify the most suitable strategy for forecasting freight rates. We argue that decision making for shipping practitioners should be based on forecasts of freight earnings at different hierarchical levels. In other words, different strategic shipping decisions such as operations management, choice of freight charter contract and type of investment should be matched with the appropriate level of forecasts of freight earnings that are aggregated at different macro-levels: operating route, vessel size and type of trade.

Suggested Citation

  • Abouarghoub, Wessam & Nomikos, Nikos K. & Petropoulos, Fotios, 2018. "On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 225-238.
  • Handle: RePEc:eee:transe:v:113:y:2018:i:c:p:225-238
    DOI: 10.1016/j.tre.2017.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554516307955
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Nikos C. Papapostolou & Nikos K. Nomikos & Panos K. Pouliasis & Ioannis Kyriakou, 2014. "Investor Sentiment for Real Assets: The Case of Dry Bulk Shipping Market," Review of Finance, European Finance Association, vol. 18(4), pages 1507-1539.
    5. Zellner, Arnold & Tobias, Justin, 1998. "A Note on Aggregation, Disaggregation and Forecasting Performance," CUDARE Working Papers 198677, University of California, Berkeley, Department of Agricultural and Resource Economics.
    6. Dangerfield, Byron J. & Morris, John S., 1992. "Top-down or bottom-up: Aggregate versus disaggregate extrapolations," International Journal of Forecasting, Elsevier, vol. 8(2), pages 233-241, October.
    7. Manolis Kavussanos & Nikos Nomikos, 2003. "Price Discovery, Causality and Forecasting in the Freight Futures Market," Review of Derivatives Research, Springer, vol. 6(3), pages 203-230, October.
    8. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    9. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    10. Manolis G. Kavussanos & Nikos K. Nomikos, 1999. "The forward pricing function of the shipping freight futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(3), pages 353-376, May.
    11. Batchelor, Roy & Alizadeh, Amir & Visvikis, Ilias, 2007. "Forecasting spot and forward prices in the international freight market," International Journal of Forecasting, Elsevier, vol. 23(1), pages 101-114.
    12. Kavussanos, Manolis G. & Dimitrakopoulos, Dimitris N., 2011. "Market risk model selection and medium-term risk with limited data: Application to ocean tanker freight markets," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 258-268.
    13. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
    14. Kavussanos, Manolis G. & Alizadeh-M, Amir H., 2001. "Seasonality patterns in dry bulk shipping spot and time charter freight rates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(6), pages 443-467, December.
    15. Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
    16. Adland, Roar & Cullinane, Kevin, 2006. "The non-linear dynamics of spot freight rates in tanker markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(3), pages 211-224, May.
    17. Jiao Zhang & Qingcheng Zeng & Xiaofeng Zhao, 2014. "Forecasting spot freight rates based on forward freight agreement and time charter contract," Applied Economics, Taylor & Francis Journals, vol. 46(29), pages 3639-3648, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, Open Access Journal, vol. 13(14), pages 1-17, July.
    2. Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:113:y:2018:i:c:p:225-238. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.