IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0287897.html
   My bibliography  Save this article

Enhancing forecast accuracy using combination methods for the hierarchical time series approach

Author

Listed:
  • Rania A. H. Mohamed

Abstract

This study aims to investigate whether combining forecasts generated from different models can improve forecast accuracy rather than individual models using the hierarchical time series. Various approaches of hierarchical forecasting have been considered; a bottom-up, top-down, and an optimal combination approach. Autoregressive moving averages (ARIMA) and exponential smoothing (ETS) were used as forecasting models in creating forecasting for all levels in the hierarchy to show the effect of different forecasting methods for each hierarchical model. The results indicated that the Minimum Trace Sample estimator (MinT-Sample) and the bottom-up approaches with the ARIMA model have good predictive performance than other approaches. Moreover, the forecasts from the MinT-Sample and bottom-up approaches were combined using five different combining methods. The experimental results showed that the (AC) method is superior to all other combining methods and more accurate than other individual models at level zero (international total trade in Egypt) and level one (total exports, and total imports). So, combining forecasts generated from different models by hierarchical time series leads to more accurate forecasting of the value of imports and exports which will improve the overall international trade performance, and that is through using the forecasting values of imports and exports to plan for improving the trade balance and drawing up a more efficient production policy. Finally, the study recommends using hierarchical forecasting methods in the areas of international trade, and the Ministry of Commerce and Industry could adopt the results of this study to produce precise forecasts for international trade. Moreover, the results of this study are to be a guide for the researchers to apply these approaches in other fields to improve the performance of forecasting.

Suggested Citation

  • Rania A. H. Mohamed, 2023. "Enhancing forecast accuracy using combination methods for the hierarchical time series approach," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-18, July.
  • Handle: RePEc:plo:pone00:0287897
    DOI: 10.1371/journal.pone.0287897
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287897
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0287897&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0287897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    4. Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
    5. Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
    6. Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
    7. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(1), pages 176-222, February.
    8. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
    9. Hibon, Michele & Evgeniou, Theodoros, 2005. "To combine or not to combine: selecting among forecasts and their combinations," International Journal of Forecasting, Elsevier, vol. 21(1), pages 15-24.
    10. Mariola Pilatowska, 2009. "The Combined Forecasts Using the Akaike Weights," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 9, pages 5-16.
    11. Hakeem-Ur Rehman & Guohua Wan & Azmat Ullah & Badiea Shaukat, 2019. "Individual and combination approaches to forecasting hierarchical time series with correlated data: an empirical study," Journal of Management Analytics, Taylor & Francis Journals, vol. 6(3), pages 231-249, July.
    12. Ciccarelli, Matteo & Altavilla, Carlo, 2007. "Information combination and forecast (st)ability evidence from vintages of time-series data," Working Paper Series 846, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
    2. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    3. Marlon Mesquita Lopes Cabreira & Felipe Leite Coelho da Silva & Josiane da Silva Cordeiro & Ronald Miguel Serrano Hernández & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2024. "A Hybrid Approach for Hierarchical Forecasting of Industrial Electricity Consumption in Brazil," Energies, MDPI, vol. 17(13), pages 1-15, June.
    4. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
    5. Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Annals of Tourism Research, Elsevier, vol. 88(C).
    6. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    7. Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
    8. Fernando, Angeline Gautami & Aw, Eugene Cheng-Xi, 2023. "What do consumers want? A methodological framework to identify determinant product attributes from consumers’ online questions," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    9. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    10. Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
    11. Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
    12. Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    13. Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
    14. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    15. de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
    16. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    17. Li, Han & Chen, Hua, 2024. "Hierarchical mortality forecasting with EVT tails: An application to solvency capital requirement," International Journal of Forecasting, Elsevier, vol. 40(2), pages 549-563.
    18. Zeynep Ozsut Bogar & Askiner Gungor, 2023. "Forecasting Waste Mobile Phone (WMP) Quantity and Evaluating the Potential Contribution to the Circular Economy: A Case Study of Turkey," Sustainability, MDPI, vol. 15(4), pages 1-38, February.
    19. Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
    20. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0287897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.