IDEAS home Printed from https://ideas.repec.org/r/aen/journl/1992v13-04-a09.html
   My bibliography  Save this item

The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
  2. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.
  3. Santosh Kumar Sahu and Sumedha Kamboj, 2019. "Decomposition Analysis of GHG Emissions In Emerging Economies," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(3), pages 59-77, September.
  4. Greening, Lorna A., 2004. "Effects of human behavior on aggregate carbon intensity of personal transportation: comparison of 10 OECD countries for the period 1970-1993," Energy Economics, Elsevier, vol. 26(1), pages 1-30, January.
  5. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
  6. Zhou, Xin & Imura, Hidefumi, 2011. "How does consumer behavior influence regional ecological footprints? An empirical analysis for Chinese regions based on the multi-region input–output model," Ecological Economics, Elsevier, vol. 71(C), pages 171-179.
  7. Wang, Bo & Sun, Yefei & Chen, Qingxiang & Wang, Zhaohua, 2018. "Determinants analysis of carbon dioxide emissions in passenger and freight transportation sectors in China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 127-132.
  8. González, P.Fernández & Suárez, R.Pérez, 2003. "Decomposing the variation of aggregate electricity intensity in Spanish industry," Energy, Elsevier, vol. 28(2), pages 171-184.
  9. Greening, Lorna A. & Ting, Mike & Davis, William B., 1999. "Decomposition of aggregate carbon intensity for freight: trends from 10 OECD countries for the period 1971-1993," Energy Economics, Elsevier, vol. 21(4), pages 331-361, August.
  10. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
  11. Kveiborg, Ole & Fosgerau, Mogens, 2007. "Decomposing the decoupling of Danish road freight traffic growth and economic growth," Transport Policy, Elsevier, vol. 14(1), pages 39-48, January.
  12. Haitao Zheng & Jie Hu & Rong Guan & Shanshan Wang, 2016. "Examining Determinants of CO 2 Emissions in 73 Cities in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
  13. Yi Liang & Dongxiao Niu & Haichao Wang & Yan Li, 2017. "Factors Affecting Transportation Sector CO 2 Emissions Growth in China: An LMDI Decomposition Analysis," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
  14. Greening, Lorna A. & Ting, Michael & Krackler, Thomas J., 2001. "Effects of changes in residential end-uses and behavior on aggregate carbon intensity: comparison of 10 OECD countries for the period 1970 through 1993," Energy Economics, Elsevier, vol. 23(2), pages 153-178, March.
  15. Gardner, Douglas T. & Elkhafif, Mahmoud A. T., 1998. "Understanding industrial energy use: structural and energy intensity changes in Ontario industry," Energy Economics, Elsevier, vol. 20(1), pages 29-41, February.
  16. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
  17. Zhang, Zhong Xiang, 2001. "Why has the energy intensity fallen in China's industrial sector in the 1990s?: the relative importance of structural change and intensity change," CDS Research Reports 200111, University of Groningen, Centre for Development Studies (CDS).
  18. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
  19. Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
  20. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
  21. Sudhakara Reddy, B. & Kumar Ray, Binay, 2011. "Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector," Energy Policy, Elsevier, vol. 39(11), pages 7234-7243.
  22. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
  23. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
  24. Yang, Zhenbing & Shi, Qingquan & Lv, Xiangqiu & Shi, Qi, 2022. "Heterogeneous low-carbon targets and energy structure optimization: Does stricter carbon regulation really matter?," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 329-343.
  25. B.W. Ang & J.F. Skea, 1994. "Structural Change, Sector Disaggregation and Electricity Consumption in uk Industry," Energy & Environment, , vol. 5(1), pages 1-16, March.
  26. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
  27. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
  28. repec:dgr:rugcds:200111 is not listed on IDEAS
  29. Liu, Jun & Feng, Tingting & Yang, Xi, 2011. "The energy requirements and carbon dioxide emissions of tourism industry of Western China: A case of Chengdu city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2887-2894, August.
  30. William X. Wei & Dezhi Chen & Daiping Hu, 2016. "Study on the Evolvement of Technology Development and Energy Efficiency—A Case Study of the Past 30 Years of Development in Shanghai," Sustainability, MDPI, vol. 8(5), pages 1-21, May.
  31. Schipper, Lee & Murtishaw, Scott & Khrushch, Marta & Ting, Michael & Karbuz, Sohbet & Unander, Fridtjof, 2001. "Carbon emissions from manufacturing energy use in 13 IEA countries: long-term trends through 1995," Energy Policy, Elsevier, vol. 29(9), pages 667-688, July.
  32. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
  33. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
  34. Azam, Muhammad & Younes, Ben Zaied & Hunjra, Ahmed Imran & Hussain, Nazim, 2022. "Integrated Spatial-Temporal decomposition analysis for life cycle assessment of carbon emission intensity change in various regions of China," Resources Policy, Elsevier, vol. 79(C).
  35. Zhao, Xiaoli & Yin, Haitao, 2011. "Industrial relocation and energy consumption: Evidence from China," Energy Policy, Elsevier, vol. 39(5), pages 2944-2956, May.
  36. Peggy Hariwan & Bambang Juanda & Sri Mulatsih & Himawan Hariyoga, 2021. "Analysis of Energy Efficiency on the Manufacturing Industry in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 28-36.
  37. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
  38. Greening, Lorna A. & Davis, William B. & Schipper, Lee, 1998. "Decomposition of aggregate carbon intensity for the manufacturing sector: comparison of declining trends from 10 OECD countries for the period 1971-1991," Energy Economics, Elsevier, vol. 20(1), pages 43-65, February.
  39. Lars Wenzel & Andr Wolf, 2014. "Changing Patterns of Electricity Usage in European Manufacturing: A Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 516-530.
  40. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
  41. Suyi Kim, 2017. "LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
  42. Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
  43. GUPTA Monika, 2019. "Decomposing The Role Of Different Factors In Co2 Emissions Increase In South Asia," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(1), pages 72-86, April.
  44. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
  45. Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
  46. Shaista Alam & Mohammad Sabihuddin Butt, 2001. "Assessing Energy Consumption and Energy Intensity Changes in Pakistan: An Application of Complete Decomposition Model," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 40(2), pages 135-147.
  47. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
  48. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
  49. Wier, Mette & Hasler, Berit, 1999. "Accounting for nitrogen in Denmark--a structural decomposition analysis," Ecological Economics, Elsevier, vol. 30(2), pages 317-331, August.
  50. Hong, Jingke & Li, Clyde Zhengdao & Shen, Qiping & Xue, Fan & Sun, Bingxia & Zheng, Wei, 2017. "An Overview of the driving forces behind energy demand in China's construction industry: Evidence from 1990 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 85-94.
  51. Shorrock, L. D., 2000. "Identifying the individual components of United Kingdom domestic sector carbon emission changes between 1990 and 2000," Energy Policy, Elsevier, vol. 28(3), pages 193-200, March.
  52. Butnar, Isabela & Llop, Maria, 2011. "Structural decomposition analysis and input-output subsystems: Changes in CO2 emissions of Spanish service sectors (2000-2005)," Ecological Economics, Elsevier, vol. 70(11), pages 2012-2019, September.
  53. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
  54. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
  55. Yongbin Zhu & Yajuan Shi & Zheng Wang, 2015. "Industrial structure optimizing oriented by consuming preference pattern," EcoMod2015 8297, EcoMod.
  56. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
  57. Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
  58. P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
  59. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
  60. Murtishaw, Scott & Schipper, Lee & Unander, Fridtjof & Karbuz, Sohbet & Khrushch, Marta, 2001. "Lost carbon emissions: the role of non-manufacturing "other industries" and refining in industrial energy use and carbon emissions in IEA countries," Energy Policy, Elsevier, vol. 29(2), pages 83-102, January.
  61. Bruyn, Sander M. de, 1997. "Explaining the environmental Kuznets Curve: the case of sulphur emissions," Serie Research Memoranda 0013, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  62. Petrick, Sebastian, 2013. "Carbon efficiency, technology, and the role of innovation patterns: Evidence from German plant-level microdata," Kiel Working Papers 1833, Kiel Institute for the World Economy (IfW Kiel).
  63. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
  64. repec:dgr:rugccs:200105 is not listed on IDEAS
  65. Krista Danielle S. Yu & Raymond R. Tan & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos, 2014. "A Vulnerability Index For Post-Disaster Key Sector Prioritization," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 81-97, March.
  66. Kakali Mukhopadhyay, 2008. "Air pollution and income distribution in India," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 15(1), pages 35-64, June.
  67. Munksgaard, Jesper & Pedersen, Klaus Alsted & Wien, Mette, 2000. "Impact of household consumption on CO2 emissions," Energy Economics, Elsevier, vol. 22(4), pages 423-440, August.
  68. Yu, Mingchao & Yu, Ran & Tang, Yuxuan & Liu, Zhen, 2020. "Empirical study on the impact of China's metro services on urban transportation energy consumption," Research in Transportation Economics, Elsevier, vol. 80(C).
  69. Wang, Wenchao & Mu, Hailin & Kang, Xudong & Song, Rongchen & Ning, Yadong, 2010. "Changes in industrial electricity consumption in china from 1998 to 2007," Energy Policy, Elsevier, vol. 38(7), pages 3684-3690, July.
  70. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
  71. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
  72. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.