IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i2p171-184.html
   My bibliography  Save this article

Decomposing the variation of aggregate electricity intensity in Spanish industry

Author

Listed:
  • González, P.Fernández
  • Suárez, R.Pérez

Abstract

Several papers have dealt with methodological and application issues related to techniques for decomposing changes in environmental indicators. This paper aims to decompose changes in electricity intensity in Spanish industry and to explain the factors that contribute to these changes. Focusing on an energy intensity approach based on Divisia indices, we began by reviewing the two general parametric Divisia methods and six specific cases. In order to avoid obtaining significantly different results by using differing methods, all of them have been applied to Spanish data. Also two different disaggregation levels have been taken into consideration. Combined with electricity price analysis, the results of this paper indicate the poor contribution of structural change to substantial reductions in aggregate electricity intensity, and underline the role of innovation, development, diffusion and access to more efficient technologies as main contributors to the reduction of the energy/production ratio.

Suggested Citation

  • González, P.Fernández & Suárez, R.Pérez, 2003. "Decomposing the variation of aggregate electricity intensity in Spanish industry," Energy, Elsevier, vol. 28(2), pages 171-184.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:2:p:171-184
    DOI: 10.1016/S0360-5442(02)00086-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544202000865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(02)00086-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B.W., 1995. "Decomposition methodology in industrial energy demand analysis," Energy, Elsevier, vol. 20(11), pages 1081-1095.
    2. G. Boyd & J. F. McDonald & M. Ross & D. A. Hansont, 1987. "Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    3. Jenne, Charles & Catell, Roy, 1983. "Electricity intensity in UK industry," Energy Policy, Elsevier, vol. 11(4), pages 369-371, December.
    4. Li, Jing-Wen & Shrestha, Ram M. & Foell, Wesley K., 1990. "Structural change and energy use : The case of the manufacturing sector in Taiwan," Energy Economics, Elsevier, vol. 12(2), pages 109-115, April.
    5. Gardner, Douglas, 1993. "Industrial energy use in Ontario from 1962 to 1984," Energy Economics, Elsevier, vol. 15(1), pages 25-32, January.
    6. Ang, BW, 1994. "Decomposition of industrial energy consumption : The energy intensity approach," Energy Economics, Elsevier, vol. 16(3), pages 163-174, July.
    7. X. Q. Liu & B. W. Ang & H.L. Ong, 1992. "The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 161-178.
    8. Reitler, W. & Rudolph, M. & Schaefer, H., 1987. "Analysis of the factors influencing energy consumption in industry : A revised method," Energy Economics, Elsevier, vol. 9(3), pages 145-148, July.
    9. Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
    10. Richard B. Howarth & Lee Schipper, 1991. "Manufacturing Energy Use in Eight OECD Countries: Trends through 1988," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 15-40.
    11. Sato, Kazuo, 1976. "The Ideal Log-Change Index Number," The Review of Economics and Statistics, MIT Press, vol. 58(2), pages 223-228, May.
    12. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    13. Hulten, Charles R, 1973. "Divisia Index Numbers," Econometrica, Econometric Society, vol. 41(6), pages 1017-1025, November.
    14. Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    2. Lin, Sue J. & Lu, I.J. & Lewis, Charles, 2006. "Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective," Energy Policy, Elsevier, vol. 34(13), pages 1499-1507, September.
    3. Olanrewaju, O.A. & Jimoh, A.A. & Kholopane, P.A., 2012. "Integrated IDA–ANN–DEA for assessment and optimization of energy consumption in industrial sectors," Energy, Elsevier, vol. 46(1), pages 629-635.
    4. Olanrewaju, O.A. & Jimoh, A.A. & Kholopane, P.A., 2013. "Assessing the energy potential in the South African industry: A combined IDA-ANN-DEA (Index Decomposition Analysis-Artificial Neural Network-Data Envelopment Analysis) model," Energy, Elsevier, vol. 63(C), pages 225-232.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    2. P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
    3. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
    4. Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
    5. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    6. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    7. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    8. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    9. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    10. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    11. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    12. Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
    13. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    14. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    15. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    16. Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
    17. Liu, F. L. & Ang, B. W., 2003. "Eight methods for decomposing the aggregate energy-intensity of industry," Applied Energy, Elsevier, vol. 76(1-3), pages 15-23, September.
    18. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    19. Shrestha, Ram M. & Timilsina, Govinda R., 1996. "Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis," Energy Economics, Elsevier, vol. 18(4), pages 283-293, October.
    20. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:2:p:171-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.