IDEAS home Printed from
   My bibliography  Save this paper

Jump-preserving monitoring of dependent time series using pilot estimators


  • Steland, Ansgar


An important problem of the statistical analysis of time series is to detect change-points in the mean structure. Since this problem is a one-dimensional version of the higher dimensional problem of detecting edges in images, we study detection rules which benefit from results obtained in image processing. For the sigma-filter studied there to detect edges, asymptotic bounds for the normed delay have been established for independent data. These results are considerably extended in two directions. First, we allow for dependent processes satisfying a certain conditional mixing property. Second, we allow for more general pilot estimators, e.g., the median, resulting in better detection properties. A simulation study indicates that our new procedure indeed performs much more better.

Suggested Citation

  • Steland, Ansgar, 2003. "Jump-preserving monitoring of dependent time series using pilot estimators," Technical Reports 2004,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200403

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Pawlak, Mirek & Rafajlowicz, Ewaryst & Steland, Ansgar, 2003. "On detecting jumps in time series: Nonparametric setting," Technical Reports 2003,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Ferger Dietmar, 1996. "On The Asymptotic Behavior Of Change-Point Estimators In Case Of No Change With Applications To Testing," Statistics & Risk Modeling, De Gruyter, vol. 14(2), pages 137-144, February.
    6. Andrews, Donald W. K. & Lee, Inpyo & Ploberger, Werner, 1996. "Optimal changepoint tests for normal linear regression," Journal of Econometrics, Elsevier, vol. 70(1), pages 9-38, January.
    7. Steland, Ansgar, 2003. "Sequential control of time series by functionals of kernel-weighted empirical processes under local alternatives," Technical Reports 2003,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Ferger, D., 1994. "Nonparametric detection of changepoints for sequentially observed data," Stochastic Processes and their Applications, Elsevier, vol. 51(2), pages 359-372, July.
    9. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
    10. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200403. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.