IDEAS home Printed from https://ideas.repec.org/p/zbw/glodps/957.html
   My bibliography  Save this paper

Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States

Author

Listed:
  • Pongou, Roland
  • Tchuente, Guy
  • Tondji, Jean-Baptiste

Abstract

This study develops an economic model for a social planner who prioritizes health over short- term wealth accumulation during a pandemic. Agents are connected through a weighted undirected network of contacts, and the planner's objective is to determine the policy that contains the spread of infection below a tolerable incidence level, and that maximizes the present discounted value of real income, in that order of priority. The optimal unique policy depends both on the configuration of the contact network and the tolerable infection incidence. Comparative statics analyses are conducted: (i) they reveal the tradeoff between the economic cost of the pandemic and the infection incidence allowed; and (ii) they suggest a correlation between different measures of network centrality and individual lockdown probability with the correlation increasing with the tolerable infection incidence level. Using unique data on the networks of nursing and long-term homes in the U.S., we calibrate our model at the state level and estimate the tolerable COVID-19 infection incidence level. We find that laissez-faire (more tolerance to the virus spread) pandemic policy is associated with an increased number of deaths in nursing homes and higher state GDP growth. In terms of the death count, laissez-faire is more harmful to nursing homes than more peripheral in the networks, those located in deprived counties, and those who work for a profit. We also find that U.S. states with a Republican governor have a higher level of tolerable incidence, but policies tend to converge with high death count.

Suggested Citation

  • Pongou, Roland & Tchuente, Guy & Tondji, Jean-Baptiste, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," GLO Discussion Paper Series 957, Global Labor Organization (GLO).
  • Handle: RePEc:zbw:glodps:957
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/243294/1/GLO-DP-0957.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Gollier, 2020. "Cost–benefit analysis of age‐specific deconfinement strategies," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 22(6), pages 1746-1771, December.
    2. Coralio Ballester & Antoni Calvó-Armengol & Yves Zenou, 2006. "Who's Who in Networks. Wanted: The Key Player," Econometrica, Econometric Society, vol. 74(5), pages 1403-1417, September.
    3. Martin S Eichenbaum & Sergio Rebelo & Mathias Trabandt, 2021. "The Macroeconomics of Epidemics [Economic activity and the spread of viral diseases: Evidence from high frequency data]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5149-5187.
    4. Forneron, Jean-Jacques & Ng, Serena, 2018. "The ABC of simulation estimation with auxiliary statistics," Journal of Econometrics, Elsevier, vol. 205(1), pages 112-139.
    5. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    6. Theresa Kuchler & Dominic Russel & Johannes Stroebel, 2020. "The Geographic Spread of COVID-19 Correlates with the Structure of Social Networks as Measured by Facebook," NBER Working Papers 26990, National Bureau of Economic Research, Inc.
    7. Boyeong Hong & Bartosz J. Bonczak & Arpit Gupta & Lorna E. Thorpe & Constantine E. Kontokosta, 2021. "Exposure density and neighborhood disparities in COVID-19 infection risk," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(13), pages 2021258118-, March.
    8. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    9. M. Keith Chen & Judith A. Chevalier & Elisa F. Long, 2021. "Nursing home staff networks and COVID-19," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(1), pages 2015455118-, January.
    10. Christian Gollier, 2020. "Pandemic economics: optimal dynamic confinement under uncertainty and learning," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 45(2), pages 80-93, September.
    11. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    12. Andrea Galeotti & Benjamin Golub & Sanjeev Goyal, 2020. "Targeting Interventions in Networks," Econometrica, Econometric Society, vol. 88(6), pages 2445-2471, November.
    13. Zachary A. Bethune & Anton Korinek, 2020. "Covid-19 Infection Externalities: Trading Off Lives vs. Livelihoods," NBER Working Papers 27009, National Bureau of Economic Research, Inc.
    14. Pongou, Roland & Serrano, Roberto, 2016. "Volume of trade and dynamic network formation in two-sided economies," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 147-163.
    15. Daron Acemoglu & Victor Chernozhukov & Ivàn Werning & Michael D. Whinston, 2020. "A Multi-Risk SIR Model with Optimally Targeted Lockdown," CeMMAP working papers CWP14/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    17. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    18. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    19. Pietro Battiston & Luca Stanca, 2014. "Boundedly Rational Opinion Dynamics in Directed Social Networks: Theory and Experimental Evidence," Working Papers 267, University of Milano-Bicocca, Department of Economics, revised Jan 2014.
    20. Alexander Chudik & M. Hashem Pesaran & Alessandro Rebucci, 2021. "COVID-19 Time-Varying Reproduction Numbers Worldwide: An Empirical Analysis of Mandatory and Voluntary Social Distancing," Globalization Institute Working Papers 407, Federal Reserve Bank of Dallas.
    21. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    22. Fernando Alvarez & David Argente, 2020. "A Simple Planning Problem for COVID-19 Lockdown," Working Papers 2020-34, Becker Friedman Institute for Research In Economics.
    23. Alexander Karaivanov, 2020. "A social network model of COVID-19," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-33, October.
    24. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    25. H. Peyton Young, 2009. "Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence, and Social Learning," American Economic Review, American Economic Association, vol. 99(5), pages 1899-1924, December.
    26. Bosi, Stefano & Camacho, Carmen & Desmarchelier, David, 2021. "Optimal lockdown in altruistic economies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    27. Jeffrey E. Harris, 2020. "The Subways Seeded the Massive Coronavirus Epidemic in New York City," NBER Working Papers 27021, National Bureau of Economic Research, Inc.
    28. Pongou, Roland & Tondji, Jean-Baptiste, 2018. "Valuing inputs under supply uncertainty: The Bayesian Shapley value," Games and Economic Behavior, Elsevier, vol. 108(C), pages 206-224.
    29. Fredrik Liljeros & Christofer R. Edling & Luís A. Nunes Amaral & H. Eugene Stanley & Yvonne Åberg, 2001. "The web of human sexual contacts," Nature, Nature, vol. 411(6840), pages 907-908, June.
    30. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    31. Roland Pongou & Roberto Serrano, 2013. "Fidelity Networks and Long-Run Trends in HIV/AIDS Gender Gaps," American Economic Review, American Economic Association, vol. 103(3), pages 298-302, May.
    32. Lin Ma & Gil Shapira & Damien de Walque & Quy‐Toan Do & Jed Friedman & Andrei A. Levchenko, 2022. "The Intergenerational Mortality Trade‐Off Of Covid‐19 Lockdown Policies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(3), pages 1427-1468, August.
    33. Dingel, Jonathan I. & Neiman, Brent, 2020. "How many jobs can be done at home?," Journal of Public Economics, Elsevier, vol. 189(C).
    34. Arindam Banik & Tirthankar Nag & Sahana Roy Chowdhury & Rajashri Chatterjee, 2020. "Why Do COVID-19 Fatality Rates Differ Across Countries? An Explorative Cross-country Study Based on Select Indicators," Global Business Review, International Management Institute, vol. 21(3), pages 607-625, June.
    35. Siddhartha Bandyopadhyay & Kalyan Chatterjee & Kaustav Das & Jaideep Roy, 2020. "Learning or habit formation? Optimal timing of lockdown for disease containment," Discussion Papers 20-17, Department of Economics, University of Birmingham.
    36. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    37. Federico, Salvatore & Ferrari, Giorgio, 2020. "Taming the Spread of an Epidemic by Lockdown Policies," Center for Mathematical Economics Working Papers 639, Center for Mathematical Economics, Bielefeld University.
    38. Ben Balmford & James D. Annan & Julia C. Hargreaves & Marina Altoè & Ian J. Bateman, 2020. "Cross-Country Comparisons of Covid-19: Policy, Politics and the Price of Life," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 525-551, August.
    39. Serina Chang & Emma Pierson & Pang Wei Koh & Jaline Gerardin & Beth Redbird & David Grusky & Jure Leskovec, 2021. "Mobility network models of COVID-19 explain inequities and inform reopening," Nature, Nature, vol. 589(7840), pages 82-87, January.
    40. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 63-84, Suppl. De.
    41. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    42. Gertler, Paul J & Waldman, Donald M, 1992. "Quality-Adjusted Cost Functions and Policy Evaluation in the Nursing Home Industry," Journal of Political Economy, University of Chicago Press, vol. 100(6), pages 1232-1256, December.
    43. Jeffrey A. Frankel & Randy Kotti, 2021. "The Virus, Vaccination, and Voting," NBER Working Papers 29186, National Bureau of Economic Research, Inc.
    44. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    45. Robert S. Pindyck, 2020. "COVID-19 and the Welfare Effects of Reducing Contagion," NBER Working Papers 27121, National Bureau of Economic Research, Inc.
    46. Douglas, Paul H, 1976. "The Cobb-Douglas Production Function Once Again: Its History, Its Testing, and Some New Empirical Values," Journal of Political Economy, University of Chicago Press, vol. 84(5), pages 903-915, October.
    47. Bruno Wichmann & Roberta Wichmann, 2020. "Nonparametric estimation of a primary care production function in urban Brazil," Health Economics Review, Springer, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," Papers 2110.10230, arXiv.org.
    2. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2023. "Optimal interventions in networks during a pandemic," Journal of Population Economics, Springer;European Society for Population Economics, vol. 36(2), pages 847-883, April.
    3. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2020. "An Economic Model of Health-vs-Wealth Prioritization During COVID-19: Optimal Lockdown, Network Centrality, and Segregation," Working Papers 2009E Classification-E61,, University of Ottawa, Department of Economics.
    4. Pongou, Roland & Sidie, Ghislain Junior & Tchuente, Guy & Tondji, Jean-Baptiste, 2022. "Profits, Pandemics, and Lockdown Effectiveness in Nursing Home Networks," National Institute of Economic and Social Research (NIESR) Discussion Papers 540, National Institute of Economic and Social Research.
    5. David Baqaee & Emmanuel Farhi, 2020. "Nonlinear Production Networks with an Application to the Covid-19 Crisis," NBER Working Papers 27281, National Bureau of Economic Research, Inc.
    6. Garriga, Carlos & Manuelli, Rody & Sanghi, Siddhartha, 2022. "Optimal management of an epidemic: Lockdown, vaccine and value of life," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    7. David Baqaee & Emmanuel Farhi, 2022. "Supply and Demand in Disaggregated Keynesian Economies with an Application to the COVID-19 Crisis," American Economic Review, American Economic Association, vol. 112(5), pages 1397-1436, May.
    8. Bairoliya, Neha & İmrohoroğlu, Ayşe, 2023. "Macroeconomic consequences of stay-at-home policies during the COVID-19 pandemic," European Economic Review, Elsevier, vol. 152(C).
    9. Marina Azzimonti-Renzo & Alessandra Fogli & Fabrizio Perri & Mark Ponder, 2020. "Pandemic Control in ECON-EPI Networks," Staff Report 609, Federal Reserve Bank of Minneapolis.
    10. Çakmaklı, Cem & Demiralp, Selva & Özcan, Şebnem Kalemli & Yeşiltaş, Sevcan & Yıldırım, Muhammed A., 2023. "COVID-19 and emerging markets: A SIR model, demand shocks and capital flows," Journal of International Economics, Elsevier, vol. 145(C).
    11. Álvaro H. Chaves Castro, 2021. "Análisis sobre la evolución del COVID-19 en Colombia: ¿se alcanzará el pico de contagio?," Tiempo y Economía, Universidad de Bogotá Jorge Tadeo Lozano, vol. 8(1), pages 123-160, January.
    12. Gopal K. Basak & Chandramauli Chakraborty & Pranab Kumar Das, 2021. "Optimal Lockdown Strategy in a Pandemic: An Exploratory Analysis for Covid-19," Papers 2109.02512, arXiv.org.
    13. Giorgio Fabbri & Salvatore Federico & Davide Fiaschi & Fausto Gozzi, 2024. "Mobility decisions, economic dynamics and epidemic," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 77(1), pages 495-531, February.
    14. Lin William Cong & Ke Tang & Bing Wang & Jingyuan Wang, 2021. "An AI-assisted Economic Model of Endogenous Mobility and Infectious Diseases: The Case of COVID-19 in the United States," Papers 2109.10009, arXiv.org.
    15. Dizioli, Allan & Pinheiro, Roberto, 2021. "Information and inequality in the time of a pandemic," Journal of Economic Dynamics and Control, Elsevier, vol. 130(C).
    16. Attar, M. Aykut & Tekin-Koru, Ayça, 2022. "Latent social distancing: Identification, causes and consequences," Economic Systems, Elsevier, vol. 46(1).
    17. David E. Bloom & Michael Kuhn & Klaus Prettner, 2022. "Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses," Journal of Economic Literature, American Economic Association, vol. 60(1), pages 85-131, March.
    18. Victor Aguirregabiria & Jiaying Gu & Yao Luo & Pedro Mira, 2020. "A Dynamic Structural Model of Virus Diffusion and Network Production: A First Report," Working Papers tecipa-665, University of Toronto, Department of Economics.
    19. Sewon Hur, 2023. "The Distributional Effects Of Covid‐19 And Optimal Mitigation Policies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(1), pages 261-294, February.
    20. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.

    More about this item

    Keywords

    COVID-19; health-vs-wealth prioritization; economic cost; weighted networks; network centrality; nursing homes; optimally targeted lockdown policy;
    All these keywords.

    JEL classification:

    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination
    • H12 - Public Economics - - Structure and Scope of Government - - - Crisis Management
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • J15 - Labor and Demographic Economics - - Demographic Economics - - - Economics of Minorities, Races, Indigenous Peoples, and Immigrants; Non-labor Discrimination

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:glodps:957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/glabode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.