IDEAS home Printed from https://ideas.repec.org/p/zbw/esprep/130143.html
   My bibliography  Save this paper

Computation of solutions to dynamic models with occasionally binding constraints

Author

Listed:
  • Holden, Tom

Abstract

We construct the first algorithm for the perfect foresight solution of otherwise linear models with occasionally binding constraints, with fixed terminal conditions, that is guaranteed to return a solution in finite time, if one exists. We also provide a proof of the inescapability of the “curse of dimensionality” for this problem when nothing is known a priori about the model. We go on to extend our algorithm to deal with stochastic simulation, other non-linearities, and future uncertainty. We show that the resulting algorithm produces fast and accurate simulations of a range of models with occasionally binding constraints.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Holden, Tom, 2016. "Computation of solutions to dynamic models with occasionally binding constraints," EconStor Preprints 130143, ZBW - German National Library of Economics.
  • Handle: RePEc:zbw:esprep:130143
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tom Holden & Michael Paetz, 2012. "Efficient Simulation of DSGE Models with Inequality Constraints," Quantitative Macroeconomics Working Papers 21207b, Hamburg University, Department of Economics.
    2. Schmitt-Grohe, Stephanie & Uribe, Martin, 2003. "Closing small open economy models," Journal of International Economics, Elsevier, vol. 61(1), pages 163-185, October.
    3. Tom Holden, 2010. "Products, patents and productivity persistence: A DSGE model of endogenous growth," Economics Series Working Papers 512, University of Oxford, Department of Economics.
    4. Fair, Ray C & Taylor, John B, 1983. "Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 51(4), pages 1169-1185, July.
    5. Paul Beaudry & Franck Portier, 2006. "Stock Prices, News, and Economic Fluctuations," American Economic Review, American Economic Association, vol. 96(4), pages 1293-1307, September.
    6. Guerrieri, Luca & Iacoviello, Matteo, 2015. "OccBin: A toolkit for solving dynamic models with occasionally binding constraints easily," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 22-38.
    7. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Solving DSGE models with a nonlinear moving average," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2643-2667.
    8. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
    9. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    10. Bodenstein, Martin & Guerrieri, Luca & Gust, Christopher J., 2013. "Oil shocks and the zero bound on nominal interest rates," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 941-967.
    11. Kenneth Judd & Lilia Maliar & Serguei Maliar, 2012. "Merging simulation and projection approaches to solve high-dimensional problems," Working Papers. Serie AD 2012-20, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    12. Tibor Illés & Marianna Nagy & Tamás Terlaky, 2010. "A polynomial path-following interior point algorithm for general linear complementarity problems," Journal of Global Optimization, Springer, vol. 47(3), pages 329-342, July.
    13. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    14. Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tom D. Holden & Paul Levine & Jonathan M. Swarbrick, 2017. "Credit Crunches from Occasionally Binding Bank Borrowing Constraints," Staff Working Papers 17-57, Bank of Canada.
    2. Darracq Pariès, Matthieu & Kühl, Michael, 2016. "The optimal conduct of central bank asset purchases," Working Paper Series 1973, European Central Bank.
    3. William John Tayler & Roy Zilberman, 2017. "Taxation, Credit Spreads and Liquidity Traps," Working Papers 173174116, Lancaster University Management School, Economics Department.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates
    • E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esprep:130143. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/zbwkide.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.