IDEAS home Printed from https://ideas.repec.org/p/unm/unumer/2019032.html
   My bibliography  Save this paper

Testing the employment and skill impact of new technologies: A survey and some methodological issues

Author

Listed:
  • Barbieri, Laura

    (Università Cattolica di Piacenza)

  • Mussida, Chiara

    (Università Cattolica di Piacenza)

  • Piva, Mariacristina

    (Università Cattolica di Piacenza)

  • Vivarelli, Marco

    (Università Cattolica di Milano)

Abstract

The present technological revolution, characterized by the pervasive and growing presence of robots, automation, Artificial Intelligence and machine learning, is going to transform societies and economic systems. However, this is not the first technological revolution humankind has been facing, but it is probably the very first one with such an accelerated diffusion pace involving all the industrial sectors. Studying its mechanisms and consequences (will the world turn into a jobless society or not?), mainly considering the labor market dynamics, is a crucial matter. This paper aims at providing an updated picture of main empirical evidence on the relationship between new technologies and employment both in terms of overall consequences on the number of employees, tasks required, and wage/inequality effect.

Suggested Citation

  • Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
  • Handle: RePEc:unm:unumer:2019032
    as

    Download full text from publisher

    File URL: https://unu-merit.nl/publications/wppdf/2019/wp2019-032.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marco Vivarelli, 2014. "Innovation, Employment and Skills in Advanced and Developing Countries: A Survey of Economic Literature," Journal of Economic Issues, Taylor & Francis Journals, vol. 48(1), pages 123-154.
    2. Francesco Chiacchio & Georgios Petropoulos & David Pichler, 2018. "The impact of industrial robots on EU employment and wages- A local labour market approach," Working Papers 25186, Bruegel.
    3. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    4. L. Aldieri & C. P. Vinci, 2018. "Innovation effects on employment in high-tech and low-tech industries: evidence from large international firms within the triad," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 8(2), pages 229-243, June.
    5. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation, and Work," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 197-236, National Bureau of Economic Research, Inc.
    6. Mariacristina Piva & Marco Vivarelli, 2018. "Technological change and employment: is Europe ready for the challenge?," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 8(1), pages 13-32, March.
    7. Andrea CONTE & Marco VIVARELLI, 2011. "Imported Skill‐Biased Technological Change In Developing Countries," The Developing Economies, Institute of Developing Economies, vol. 49(1), pages 36-65, March.
    8. Fonseca, Tiago & Lima, Francisco & Pereira, Sonia C., 2018. "Job polarization, technological change and routinization: Evidence for Portugal," Labour Economics, Elsevier, vol. 51(C), pages 317-339.
    9. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    10. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    11. Getinet Haile & Ilina Srour & Marco Vivarelli, 2017. "Imported technology and manufacturing employment in Ethiopia," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 7(1), pages 1-23, April.
    12. David, Paul A, 1985. "Clio and the Economics of QWERTY," American Economic Review, American Economic Association, vol. 75(2), pages 332-337, May.
    13. Maarten Goos & Alan Manning & Anna Salomons, 2014. "Explaining Job Polarization: Routine-Biased Technological Change and Offshoring," American Economic Review, American Economic Association, vol. 104(8), pages 2509-2526, August.
    14. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    15. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation and Work," Boston University - Department of Economics - Working Papers Series dp-298, Boston University - Department of Economics.
    16. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    17. Sebastian Lago Raquel & Federico Biagi, 2018. "The Routine Biased Technical Change hypothesis: a critical review," JRC Research Reports JRC113174, Joint Research Centre.
    18. Dosi, G. & Piva, M. & Virgillito, M.E. & Vivarelli, M., 2021. "Embodied and disembodied technological change: The sectoral patterns of job-creation and job-destruction," Research Policy, Elsevier, vol. 50(4).
    19. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    20. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    21. Pouliakas, Konstantinos, 2018. "Determinants of Automation Risk in the EU Labour Market: A Skills-Needs Approach," IZA Discussion Papers 11829, Institute of Labor Economics (IZA).
    22. Berg, Andrew & Buffie, Edward F. & Zanna, Luis-Felipe, 2018. "Should we fear the robot revolution? (The correct answer is yes)," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 117-148.
    23. Ernst Ekkehardt & Merola Rossana & Samaan Daniel, 2019. "Economics of Artificial Intelligence: Implications for the Future of Work," IZA Journal of Labor Policy, Sciendo & Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 9(1), pages 1-35, June.
    24. Alexandra Spitz-Oener, 2006. "Technical Change, Job Tasks, and Rising Educational Demands: Looking outside the Wage Structure," Journal of Labor Economics, University of Chicago Press, vol. 24(2), pages 235-270, April.
    25. Colin Caines & Florian Hoffmann & Gueorgui Kambourov, 2017. "Complex-Task Biased Technological Change and the Labor Market," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 25, pages 298-319, April.
    26. Bogliacino, Francesco & Pianta, Mario, 2010. "Innovation and Employment: a Reinvestigation using Revised Pavitt classes," Research Policy, Elsevier, vol. 39(6), pages 799-809, July.
    27. Luca Marcolin & Sébastien Miroudot & Mariagrazia Squicciarini, 2019. "To be (routine) or not to be (routine), that is the question: a cross-country task-based answer†," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 28(3), pages 477-501.
    28. Giovanni Dosi & Pierre Mohnen, 2019. "Innovation and employment: an introduction," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 28(1), pages 45-49.
    29. Stephen Machin & John Van Reenen, 1998. "Technology and Changes in Skill Structure: Evidence from Seven OECD Countries," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1215-1244.
    30. Martin Falk & Eva Hagsten, 2018. "Employment impacts of market novelty sales: evidence for nine European Countries," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 8(2), pages 119-137, June.
    31. Carbonero, Francesco. & Ernst, Ekkehard & Weber, Enzo., 2018. "Robots worldwide the impact of automation on employment and trade," ILO Working Papers 995008793402676, International Labour Organization.
    32. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    33. Gianluca Capone & Franco Malerba & Richard R. Nelson & Luigi Orsenigo & Sidney G. Winter, 2019. "History friendly models: retrospective and future perspectives," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(1), pages 1-23, March.
    34. James Bessen, 2018. "Artificial Intelligence and Jobs: The Role of Demand," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 291-307, National Bureau of Economic Research, Inc.
    35. Melanie Arntz & Terry Gregory & Ulrich Zierahn, 2016. "The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis," OECD Social, Employment and Migration Working Papers 189, OECD Publishing.
    36. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1, July.
    37. Daron Acemoglu & Pascual Restrepo, 2017. "Robots and Jobs: Evidence from US Labor Markets," Boston University - Department of Economics - Working Papers Series dp-297, Boston University - Department of Economics.
    38. Dani Rodrik, 2016. "Premature deindustrialization," Journal of Economic Growth, Springer, vol. 21(1), pages 1-33, March.
    39. Maarten Goos & Alan Manning, 2007. "Lousy and Lovely Jobs: The Rising Polarization of Work in Britain," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 118-133, February.
    40. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    41. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2017. "Revisiting the risk of automation," Economics Letters, Elsevier, vol. 159(C), pages 157-160.
    42. Van Roy, Vincent & Vértesy, Dániel & Vivarelli, Marco, 2018. "Technology and employment: Mass unemployment or job creation? Empirical evidence from European patenting firms," Research Policy, Elsevier, vol. 47(9), pages 1762-1776.
    43. Alex Coad & Rekha Rao, 2011. "The firm-level employment effects of innovations in high-tech US manufacturing industries," Journal of Evolutionary Economics, Springer, vol. 21(2), pages 255-283, May.
    44. Flavio Calvino & Maria Enrica Virgillito, 2018. "The Innovation†Employment Nexus: A Critical Survey Of Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 32(1), pages 83-117, February.
    45. Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338, January.
    46. Mehmet Ugur & Sefa Awaworyi Churchill & Edna Solomon, 2018. "Technological Innovation And Employment In Derived Labour Demand Models: A Hierarchical Meta†Regression Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 32(1), pages 50-82, February.
    47. Adrian Adermon & Magnus Gustavsson, 2015. "Job Polarization and Task-Biased Technological Change: Evidence from Sweden, 1975–2005," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(3), pages 878-917, July.
    48. Marco Vivarelli, 1995. "The Economics of Technology and Employment," Books, Edward Elgar Publishing, number 458, Summer.
    49. Ljubica Nedelkoska & Glenda Quintini, 2018. "Automation, skills use and training," OECD Social, Employment and Migration Working Papers 202, OECD Publishing.
    50. Bart Los & Marcel P. Timmer & Gaaitzen J. De Vries, 2014. "The Demand for Skills 1995-2008: A Global Supply Chain Perspective," OECD Economics Department Working Papers 1141, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2023. "AI technologies and employment: micro evidence from the supply side," Applied Economics Letters, Taylor & Francis Journals, vol. 30(6), pages 816-821, March.
    2. Nii-Aponsah, Hubert, 2022. "Automation exposure and implications in advanced and developing countries across gender, age, and skills," MERIT Working Papers 2022-021, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    3. Fernández-Macías, Enrique & Klenert, David & Antón, José-Ignacio, 2021. "Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 76-89.
    4. Antón, José-Ignacio & Fernández-Macías, Enrique & Winter-Ebmer, Rudolf, 2020. "Does Robotization Affect Job Quality? Evidence from European Regional Labour Markets," IZA Discussion Papers 13975, Institute of Labor Economics (IZA).
    5. Horbach, Jens & Rammer, Christian, 2020. "Labor shortage and innovation," ZEW Discussion Papers 20-009, ZEW - Leibniz Centre for European Economic Research.
    6. René Böheim & Michael Christl, 2022. "Mismatch unemployment in Austria: the role of regional labour markets for skills," Regional Studies, Regional Science, Taylor & Francis Journals, vol. 9(1), pages 208-222, December.
    7. Marco Vivarelli, 2022. "Innovation and employment: a short update," DISCE - Quaderni del Dipartimento di Politica Economica dipe0024, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    8. Barth, Erling & Roed, Marianne & Schone, Pal & Umblijs, Janis, 2020. "How Robots Change Within-Firm Wage Inequality," IZA Discussion Papers 13605, Institute of Labor Economics (IZA).
    9. Alexandri, Eva & Antón, José-Ignacio & Lewney, Richard, 2024. "The impact of climate change mitigation policies on European labour markets," Ecological Economics, Elsevier, vol. 216(C).
    10. Luigi Campiglio, 2020. "Lo Stato Sociale: da "lusso" a necessità," DISCE - Quaderni del Dipartimento di Politica Economica dipe0008, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    2. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    3. Dosi, G. & Piva, M. & Virgillito, M.E. & Vivarelli, M., 2021. "Embodied and disembodied technological change: The sectoral patterns of job-creation and job-destruction," Research Policy, Elsevier, vol. 50(4).
    4. Damioli, G. & Van Roy, V. & Vertesy, D. & Vivarelli, M., 2021. "May AI revolution be labour-friendly? Some micro evidence from the supply side," GLO Discussion Paper Series 823, Global Labor Organization (GLO).
    5. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2021. "Detecting the labour-friendly nature of AI product innovation," DISCE - Quaderni del Dipartimento di Politica Economica dipe0017, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    6. Laura Barbieri & Chiara Mussida & Mariacristina Piva & Marco Vivarelli, 2019. "Testing the employment impact of automation, robots and AI: A survey and some methodological issues," DISCE - Quaderni del Dipartimento di Politica Economica dipe0006, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    7. Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2021. "Will the AI revolution be labour-friendly? Some micro evidence from the supply side," MERIT Working Papers 2021-016, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    8. Giovanni Dosi & Mariacristina Piva & Maria Enrica Virgillito & Marco Vivarelli, 2019. "Technology and employment in a vertically connected economy: a model and an empirical test," DISCE - Quaderni del Dipartimento di Politica Economica dipe0005, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    9. Cirillo, Valeria & Evangelista, Rinaldo & Guarascio, Dario & Sostero, Matteo, 2021. "Digitalization, routineness and employment: An exploration on Italian task-based data," Research Policy, Elsevier, vol. 50(7).
    10. Van Roy, Vincent & Vértesy, Dániel & Vivarelli, Marco, 2018. "Technology and employment: Mass unemployment or job creation? Empirical evidence from European patenting firms," Research Policy, Elsevier, vol. 47(9), pages 1762-1776.
    11. Vivarelli, Marco, 2018. "Globalisation, structural change and innovation in emerging economies: The impact on employment and skills," MERIT Working Papers 2018-037, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    12. Fernández-Macías, Enrique & Klenert, David & Antón, José-Ignacio, 2021. "Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 76-89.
    13. Du Yuhong & Wei Xiahai, 2020. "Task content routinisation, technological change and labour turnover: Evidence from China," The Economic and Labour Relations Review, , vol. 31(3), pages 324-346, September.
    14. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2019. "Digitalization and the Future of Work: Macroeconomic Consequences," IZA Discussion Papers 12428, Institute of Labor Economics (IZA).
    15. Dosi, G. & Pereira, M.C. & Roventini, A. & Virgillito, M.E., 2022. "Technological paradigms, labour creation and destruction in a multi-sector agent-based model," Research Policy, Elsevier, vol. 51(10).
    16. Maarten Goos & Melanie Arntz & Ulrich Zierahn & Terry Gregory & Stephanie Carretero Gomez & Ignacio Gonzalez Vazquez & Koen Jonkers, 2019. "The Impact of Technological Innovation on the Future of Work," JRC Working Papers on Labour, Education and Technology 2019-03, Joint Research Centre.
    17. Jelena Reljic & Rinaldo Evangelista & Mario Pianta, 2019. "Digital technologies, employment and skills," LEM Papers Series 2019/36, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    18. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    19. Hensvik, Lena & Skans, Oskar Nordström, 2023. "The skill-specific impact of past and projected occupational decline," Labour Economics, Elsevier, vol. 81(C).
    20. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.

    More about this item

    Keywords

    technology; innovation; employment; skill; task; routine;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:unumer:2019032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ad Notten (email available below). General contact details of provider: https://edirc.repec.org/data/meritnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.