IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2009cf671.html
   My bibliography  Save this paper

Moment-Based Estimation of Smooth Transition Regression Models with Endogenous Variables

Author

Listed:
  • Waldyr Dutra Areosa

    (Department of Economics, Pontifical Catholic University of Rio de Janeiro and Banco Central do Brasil)

  • Michael McAleer

    (Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam and Tinbergen Institute and Center for International Research on the Japanese Economy (CIRJE), Faculty of Economics, University of Tokyo)

  • Marcelo C. Medeiros

    (Department of Economics Pontifical Catholic University of Rio de Janeiro)

Abstract

Nonlinear regression models have been widely used in practice for a variety of time series and cross-section datasets. For purposes of analyzing univariate and multivariate time series data, in particular, Smooth Transition Regression (STR) models have been shown to be very useful for representing and capturing asymmetric behavior. Most STR models have been applied to univariate processes, and have made a variety of assumptions, including stationary or cointegrated processes, uncorrelated, homoskedastic or conditionally heteroskedastic errors, and weakly exogenous regressors. Under the assumption of exogeneity, the standard method of estimation is nonlinear least squares. The primary purpose of this paper is to relax the assumption of weakly exogenous regressors and to discuss moment based methods for estimating STR models. The paper analyzes the properties of the STR model with endogenous variables by providing a diagnostic test of linearity of the underlying process under endogeneity, developing an estimation procedure and a misspecification test for the STR model, presenting the results of Monte Carlo simulations to show the usefulness of the model and estimation method, and providing an empirical application for inflation rate targeting in Brazil. We show that STR models with endogenous variables can be specified and estimated by a straightforward application of existing results in the literature.

Suggested Citation

  • Waldyr Dutra Areosa & Michael McAleer & Marcelo C. Medeiros, 2009. "Moment-Based Estimation of Smooth Transition Regression Models with Endogenous Variables," CIRJE F-Series CIRJE-F-671, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2009cf671
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2009/2009cf671.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. In Choi & Pentti Saikkonen, 2004. "Testing linearity in cointegrating smooth transition regressions," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 341-365, December.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
    4. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    5. Mayte Suarez -Farinas & Carlos E. Pedreira & Marcelo C. Medeiros, 2004. "Local Global Neural Networks: A New Approach for Nonlinear Time Series Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1092-1107, December.
    6. Caner, Mehmet & Hansen, Bruce E., 2004. "Instrumental Variable Estimation Of A Threshold Model," Econometric Theory, Cambridge University Press, vol. 20(05), pages 813-843, October.
    7. Douglas Laxton & Guy Meredith & David Rose, 1995. "Asymmetric Effects of Economic Activity on Inflation: Evidence and Policy Implications," IMF Staff Papers, Palgrave Macmillan, vol. 42(2), pages 344-374, June.
    8. Cukierman, Alex & Wachtel, Paul, 1979. "Differential Inflationary Expectations and the Variability of the Rate of Inflation: Theory and Evidence," American Economic Review, American Economic Association, vol. 69(4), pages 595-609, September.
    9. Lundbergh, Stefan & Teräsvirta, Timo, 1998. "Modelling economic high-frequency time series with STAR-STGARCH models," SSE/EFI Working Paper Series in Economics and Finance 291, Stockholm School of Economics.
    10. Sergio A. L. Alves & Waldyr D. Areosa, 2005. "Targets and Inflation Dynamics," Working Papers Series 100, Central Bank of Brazil, Research Department.
    11. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    12. Amemiya, Takeshi, 1975. "The nonlinear limited-information maximum- likelihood estimator and the modified nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 3(4), pages 375-386, November.
    13. Newey, Whitney K, 1990. "Efficient Instrumental Variables Estimation of Nonlinear Models," Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
    14. Logue, Dennis E & Willett, Thomas D, 1976. "A Note on the Relation between the Rate and Variability of Inflation," Economica, London School of Economics and Political Science, vol. 43(17), pages 151-158, May.
    15. Galí, Jordi & Gertler, Mark, 1999. "Inflation Dynamics: A Structural Economic Analysis," CEPR Discussion Papers 2246, C.E.P.R. Discussion Papers.
    16. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
    17. Alberto Musso & Livio Stracca & Dick van Dijk, 2009. "Instability and Nonlinearity in the Euro-Area Phillips Curve," International Journal of Central Banking, International Journal of Central Banking, vol. 5(2), pages 181-212, June.
    18. Michael Woodford, 2004. "Inflation targeting and optimal monetary policy," Review, Federal Reserve Bank of St. Louis, issue Jul, pages 15-42.
    19. Nobay, A. R. & Peel, D. A., 2000. "Optimal monetary policy with a nonlinear Phillips curve," Economics Letters, Elsevier, vol. 67(2), pages 159-164, May.
    20. Frederic S. Mishkin, 2004. "Can Inflation Targeting Work in Emerging Market Countries?," NBER Working Papers 10646, National Bureau of Economic Research, Inc.
    21. Martin Cerisola & Gaston Gelos, 2009. "What drives inflation expectations in Brazil? An empirical analysis," Applied Economics, Taylor & Francis Journals, vol. 41(10), pages 1215-1227.
    22. Frederic S. Mishkin & Klaus Schmidt-Hebbel, 2001. "One Decade of Inflation Targeting in the World: What Do We Know and What Do We Need to Know?," NBER Working Papers 8397, National Bureau of Economic Research, Inc.
    23. Amemiya, Takeshi, 1974. "The nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 2(2), pages 105-110, July.
    24. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    25. Li, W K & Ling, Shiqing & McAleer, Michael, 2002. " Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-269, July.
    26. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    27. Medeiros, Marcelo & Veiga, Alvaro, 2000. "A Flexible Coefficient Smooth Transition Time Series Model," SSE/EFI Working Paper Series in Economics and Finance 360, Stockholm School of Economics, revised 29 Apr 2004.
    28. Amemiya, Takeshi, 1977. "The Maximum Likelihood and the Nonlinear Three-Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation Model," Econometrica, Econometric Society, vol. 45(4), pages 955-968, May.
    29. Dionísio Dias Carneiro, 2000. "Inflation targeting in Brazil: what difference does a year make?," Textos para discussão 429, Department of Economics PUC-Rio (Brazil).
    30. Saikkonen, Pentti & Choi, In, 2004. "Cointegrating Smooth Transition Regressions," Econometric Theory, Cambridge University Press, vol. 20(02), pages 301-340, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naoto Kunitomo & Michael McAleer & Yoshihiko Nishiyama, 2010. "Moment Restriction-based Econometric Methods: An Overview," Working Papers in Economics 10/65, University of Canterbury, Department of Economics and Finance.
    2. Line Elvstrøm Ekner & Emil Nejstgaard, 2013. "Parameter Identification in the Logistic STAR Model," Discussion Papers 13-07, University of Copenhagen. Department of Economics.
    3. Massacci, Daniele, 2013. "A variable addition test for exogeneity in structural threshold models," Economics Letters, Elsevier, vol. 120(1), pages 5-9.
    4. Damette, Olivier, 2016. "Mixture Distribution Hypothesis And The Impact Of A Tobin Tax On Exchange Rate Volatility: A Reassessment," Macroeconomic Dynamics, Cambridge University Press, vol. 20(06), pages 1600-1622, September.
    5. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
    6. Sachsida, Adolfo, 2013. "Inflação, Desemprego e Choques Cambiais: Uma Revisão da Literatura sobre a Curva de Phillips no Brasil," Revista Brasileira de Economia - RBE, FGV/EPGE - Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil), vol. 67(4), November.
    7. Phiri, Andrew, 2015. "Examining asymmetric effects in the South African Philips curve: Evidence from logistic smooth transition regression (LSTR) models," MPRA Paper 64487, University Library of Munich, Germany.
    8. Massacci, Daniele, 2012. "A simple test for linearity against exponential smooth transition models with endogenous variables," Economics Letters, Elsevier, vol. 117(3), pages 851-856.
    9. Hillebrand Eric & Medeiros Marcelo C. & Xu Junyue, 2013. "Asymptotic Theory for Regressions with Smoothly Changing Parameters," Journal of Time Series Econometrics, De Gruyter, vol. 5(2), pages 133-162, April.
    10. repec:fgv:epgrbe:v:67:n:4:a:8 is not listed on IDEAS
    11. Andrews, Donald W.K. & Cheng, Xu, 2014. "Gmm Estimation And Uniform Subvector Inference With Possible Identification Failure," Econometric Theory, Cambridge University Press, vol. 30(02), pages 287-333, April.
    12. Otilia Boldea & Alastair R. Hall, 2013. "Testing structural stability in macroeconometric models," Chapters,in: Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 9, pages 206-228 Edward Elgar Publishing.
    13. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.
    14. repec:spr:empeco:v:53:y:2017:i:4:d:10.1007_s00181-016-1195-0 is not listed on IDEAS

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2009cf671. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: http://edirc.repec.org/data/ritokjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.