IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Moment-bases estimation of smooth transition regression models with endogenous variables

Listed author(s):
  • Areosa, W.D.
  • McAleer, M.J.
  • Medeiros, M.C.

Nonlinear regression models have been widely used in practice for a variety of time series and cross-section datasets. For purposes of analyzing univariate and multivariate time series data, in particular, Smooth Transition Regression (STR) models have been shown to be very useful for representing and capturing asymmetric behavior. Most STR models have been applied to univariate processes, and have made a variety of assumptions, including stationary or cointegrated processes, uncorrelated, homoskedastic or conditionally heteroskedastic errors, and weakly exogenous regressors. Under the assumption of exogeneity, the standard method of estimation is nonlinear least squares. The primary purpose of this paper is to relax the assumption of weakly exogenous regressors and to discuss moment based methods for estimating STR models. The paper analyzes the properties of the STR model with endogenous variables by providing a diagnostic test of linearity of the underlying process under endogeneity, developing an estimation procedure and a misspecification test for the STR model, presenting the results of Monte Carlo simulations to show the usefulness of the model and estimation method, and providing an empirical application for inflation rate targeting in Brazil. We show that STR models with endogenous variables can be specified and estimated by a straightforward application of existing results in the literature.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repub.eur.nl/pub/14154/ei2008-36.pdf
Download Restriction: no

Paper provided by Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute in its series Econometric Institute Research Papers with number EI 2008-36.

as
in new window

Length:
Date of creation: 16 Dec 2008
Handle: RePEc:ems:eureir:14154
Contact details of provider: Postal:
Postbus 1738, 3000 DR Rotterdam

Phone: 31 10 4081111
Web page: http://www.eur.nl/ese

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Newey, Whitney K, 1990. "Efficient Instrumental Variables Estimation of Nonlinear Models," Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
  2. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, December.
  3. Logue, Dennis E & Willett, Thomas D, 1976. "A Note on the Relation between the Rate and Variability of Inflation," Economica, London School of Economics and Political Science, vol. 43(17), pages 151-158, May.
  4. van Dijk, Dick & Teräsvirta, Timo & Franses, Philip Hans, 2000. "Smooth Transition Autoregressive Models - A Survey of Recent Developments," SSE/EFI Working Paper Series in Economics and Finance 380, Stockholm School of Economics, revised 17 Jan 2001.
  5. Amemiya, Takeshi, 1974. "The nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 2(2), pages 105-110, July.
  6. Frederic S. Mishkin & Klaus Schmidt-Hebbel, 2001. "One decade of inflation targeting in the world : What do we know and what do we need to know?," Working Papers Central Bank of Chile 101, Central Bank of Chile.
  7. Sergio A. L. Alves & Waldyr D. Areosa, 2005. "Targets and Inflation Dynamics," Working Papers Series 100, Central Bank of Brazil, Research Department.
  8. Michael Woodford, 2004. "Inflation targeting and optimal monetary policy," Review, Federal Reserve Bank of St. Louis, issue Jul, pages 15-42.
  9. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
  10. Lundbergh, Stefan & Teräsvirta, Timo, 1998. "Modelling economic high-frequency time series with STAR-STGARCH models," SSE/EFI Working Paper Series in Economics and Finance 291, Stockholm School of Economics.
  11. Saikkonen, Pentti & Choi, In, 2004. "Cointegrating Smooth Transition Regressions," Econometric Theory, Cambridge University Press, vol. 20(02), pages 301-340, April.
  12. Nobay, A. R. & Peel, D. A., 2000. "Optimal monetary policy with a nonlinear Phillips curve," Economics Letters, Elsevier, vol. 67(2), pages 159-164, May.
  13. In Choi & Pentti Saikkonen, 2004. "Testing linearity in cointegrating smooth transition regressions," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 341-365, December.
  14. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, 09.
  15. Medeiros, Marcelo & Veiga, Alvaro, 2000. "A Flexible Coefficient Smooth Transition Time Series Model," SSE/EFI Working Paper Series in Economics and Finance 360, Stockholm School of Economics, revised 10 Feb 2000.
  16. Caner, Mehmet & Hansen, Bruce E., 2004. "Instrumental Variable Estimation Of A Threshold Model," Econometric Theory, Cambridge University Press, vol. 20(05), pages 813-843, October.
  17. Mayte Suarez -Farinas & Carlos E. Pedreira & Marcelo C. Medeiros, 2004. "Local Global Neural Networks: A New Approach for Nonlinear Time Series Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1092-1107, December.
  18. Amemiya, Takeshi, 1977. "The Maximum Likelihood and the Nonlinear Three-Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation Model," Econometrica, Econometric Society, vol. 45(4), pages 955-968, May.
  19. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
  20. Cukierman, Alex & Wachtel, Paul, 1979. "Differential Inflationary Expectations and the Variability of the Rate of Inflation: Theory and Evidence," American Economic Review, American Economic Association, vol. 69(4), pages 595-609, September.
  21. Frederic S. Mishkin, 2004. "Can Inflation Targeting Work in Emerging Market Countries?," NBER Working Papers 10646, National Bureau of Economic Research, Inc.
  22. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
  23. Amemiya, Takeshi, 1975. "The nonlinear limited-information maximum- likelihood estimator and the modified nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 3(4), pages 375-386, November.
  24. Douglas Laxton & Guy Meredith & David Rose, 1995. "Asymmetric Effects of Economic Activity on Inflation: Evidence and Policy Implications," IMF Staff Papers, Palgrave Macmillan, vol. 42(2), pages 344-374, June.
  25. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
  26. Dionísio Dias Carneiro, 2000. "Inflation targeting in Brazil: what difference does a year make?," Textos para discussão 429, Department of Economics PUC-Rio (Brazil).
  27. Li, W K & Ling, Shiqing & McAleer, Michael, 2002. " Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-269, July.
  28. Galí, Jordi & Gertler, Mark, 1999. "Inflation Dynamics: A Structural Economic Analysis," CEPR Discussion Papers 2246, C.E.P.R. Discussion Papers.
  29. Musso, Alberto & Stracca, Livio & van Dijk, Dick, 2007. "Instability and nonlinearity in the euro area Phillips curve," Working Paper Series 0811, European Central Bank.
  30. Martin Cerisola & R. G Gelos, 2005. "What Drives Inflation Expectations in Brazil? An Empirical Analysis," IMF Working Papers 05/109, International Monetary Fund.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ems:eureir:14154. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.