IDEAS home Printed from https://ideas.repec.org/p/kyo/wpaper/734.html

Moment Restriction-based Econometric Methods: An Overview

Author

Listed:
  • Naoto Kunitomo

    (Faculty of Economics, University of Tokyo)

  • Michael McAleer

    (Erasmus University Rotterdam, Tinbergen Institute, The Netherlands, and Institute of Economic Research, Kyoto University)

  • Yoshihiko Nishiyama

    (Institute of Economic Research, Kyoto University)

Abstract

Moment restriction-based econometric modelling is a broad class which includes the parametric, semiparametric and nonparametric approaches. Moments and conditional moments themselves are nonparametric quantities. If a model is specified in part up to some finite dimensional parameters, this will provide semiparametric estimates or tests. If we use the score to construct moment restrictions to estimate finite dimensional parameters, this yields maximum likelihood (ML) estimates. Semiparametric or nonparametric settings based on moment restrictions have been the main concern in the literature, and comprise the most important and interesting topics. The purpose of this special issue on "Moment Restriction-based Econometric Methods" is to highlight some areas in which novel econometric methods have contributed significantly to the analysis of moment restrictions, specifically asymptotic theory for nonparametric regression with spatial data, a control variate method for stationary processes, method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models, properties of the CUE estimator and a modification with moments, finite sample properties of alternative estimators of coefficients in a structural equation with many instruments, instrumental variable estimation in the presence of many moment conditions, estimation of conditional moment restrictions without assuming parameter identifiability in the implied unconditional moments, moment-based estimation of smooth transition regression models with endogenous variables, a consistent nonparametric test for nonlinear causality, and linear programming-based estimators in simple linear regression.

Suggested Citation

  • Naoto Kunitomo & Michael McAleer & Yoshihiko Nishiyama, 2010. "Moment Restriction-based Econometric Methods: An Overview," KIER Working Papers 734, Kyoto University, Institute of Economic Research.
  • Handle: RePEc:kyo:wpaper:734
    as

    Download full text from publisher

    File URL: http://www.kier.kyoto-u.ac.jp/DP/DP734.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kyo:wpaper:734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Makoto Watanabe (email available below). General contact details of provider: https://edirc.repec.org/data/iekyojp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.