IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/88276.html
   My bibliography  Save this paper

Should the Government Subsidize Innovation or Automation?

Author

Listed:
  • Chu, Angus C.
  • Cozzi, Guido
  • Furukawa, Yuichi
  • Liao, Chih-Hsing

Abstract

This study introduces automation into a Schumpeterian model to explore the different effects of R&D and automation subsidies. R&D subsidy increases innovation and decreases the share of automated industries with an overall inverted-U effect on economic growth. Automation subsidy decreases innovation and increases the share of automated industries also with an inverted-U effect on growth. Calibrating the model to US data, we find that the current level of R&D (automation) subsidy is above (below) the growth-maximizing level. Simulating transition dynamics, we find that changing R&D (automation) subsidy to its growth-maximizing level causes a welfare gain of 3.8% increase in consumption.

Suggested Citation

  • Chu, Angus C. & Cozzi, Guido & Furukawa, Yuichi & Liao, Chih-Hsing, 2018. "Should the Government Subsidize Innovation or Automation?," MPRA Paper 88276, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:88276
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/88276/1/MPRA_paper_88276.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/92508/1/MPRA_paper_92508.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/94240/1/MPRA_paper_94240.pdf
    File Function: revised version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Cozzi, Guido & Giordani, Paolo E. & Zamparelli, Luca, 2007. "The refoundation of the symmetric equilibrium in Schumpeterian growth models," Journal of Economic Theory, Elsevier, vol. 136(1), pages 788-797, September.
    2. Joseph Zeira, 1998. "Workers, Machines, and Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1091-1117.
    3. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    4. Zeira, Joseph, 2005. "Machines as Engines of Growth," CEPR Discussion Papers 5429, C.E.P.R. Discussion Papers.
    5. Jones, Charles I & Williams, John C, 2000. "Too Much of a Good Thing? The Economics of Investment in R&D," Journal of Economic Growth, Springer, vol. 5(1), pages 65-85, March.
    6. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders in the Theory of Growth," Review of Economic Studies, Oxford University Press, vol. 58(1), pages 43-61.
    7. Trimborn, Timo & Koch, Karl-Josef & Steger, Thomas M., 2008. "Multidimensional Transitional Dynamics: A Simple Numerical Procedure," Macroeconomic Dynamics, Cambridge University Press, vol. 12(3), pages 301-319, June.
    8. Angus C. Chu & Yuichi Furukawa & Lei Ji, 2016. "Patents, R&D subsidies, and endogenous market structure in a schumpeterian economy," Southern Economic Journal, Southern Economic Association, vol. 82(3), pages 809-825, January.
    9. Peretto, Pietro F, 1998. "Technological Change and Population Growth," Journal of Economic Growth, Springer, vol. 3(4), pages 283-311, December.
    10. Daron Acemoglu & Ufuk Akcigit, 2012. "Intellectual Property Rights Policy, Competition And Innovation," Journal of the European Economic Association, European Economic Association, vol. 10(1), pages 1-42, February.
    11. Zeng, Jinli & Zhang, Jie, 2007. "Subsidies in an R&D growth model with elastic labor," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 861-886, March.
    12. Laitner, John & Stolyarov, Dmitriy, 2004. "Aggregate returns to scale and embodied technical change: theory and measurement using stock market data," Journal of Monetary Economics, Elsevier, vol. 51(1), pages 191-233, January.
    13. Lewis Evans & Neil Quigley & Jie Zhang, 2003. "Optimal price regulation in a growth model with monopolistic suppliers of intermediate goods," Canadian Journal of Economics, Canadian Economics Association, vol. 36(2), pages 463-474, May.
    14. Angus Chu & Guido Cozzi, 2018. "Effects of Patents versus R&D subsidies on Income Inequality," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 29, pages 68-84, July.
    15. Segerstrom, Paul S, 2000. "The Long-Run Growth Effects of R&D Subsidies," Journal of Economic Growth, Springer, vol. 5(3), pages 277-305, September.
    16. Prettner, Klaus & Strulik, Holger, 2017. "The lost race against the machine: Automation, education and inequality in an R&D-based growth model," Hohenheim Discussion Papers in Business, Economics and Social Sciences 08-2017, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    17. Philippe Aghion & Benjamin F. Jones & Charles I. Jones, 2018. "Artificial Intelligence and Economic Growth," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 237-282, National Bureau of Economic Research, Inc.
    18. Giammario Impullitti, 2010. "International Competition And U.S. R&D Subsidies: A Quantitative Welfare Analysis," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(4), pages 1127-1158, November.
    19. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    20. Dinopoulos, Elias & Segerstrom, Paul, 2010. "Intellectual property rights, multinational firms and economic growth," Journal of Development Economics, Elsevier, vol. 92(1), pages 13-27, May.
    21. Angus C. Chu & Yuichi Furukawa & Lei Ji, 2016. "Patents, R&D subsidies, and endogenous market structure in a schumpeterian economy," Southern Economic Journal, Southern Economic Association, vol. 82(3), pages 809-825, January.
    22. Segerstrom, Paul S & Anant, T C A & Dinopoulos, Elias, 1990. "A Schumpeterian Model of the Product Life Cycle," American Economic Review, American Economic Association, vol. 80(5), pages 1077-1091, December.
    23. Peter Howitt, 1999. "Steady Endogenous Growth with Population and R & D Inputs Growing," Journal of Political Economy, University of Chicago Press, vol. 107(4), pages 715-730, August.
    24. Cozzi Guido, 2007. "The Arrow Effect under Competitive R&D," The B.E. Journal of Macroeconomics, De Gruyter, vol. 7(1), pages 1-20, January.
    25. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2018. "Introduction to "The Economics of Artificial Intelligence: An Agenda"," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 1-19, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. YANO Makoto & FURUKAWA Yuichi, 2019. "Economic Black Holes and Labor Singularities in the Presence of Self-replicating Artificial Intelligence," Discussion papers 19062, Research Institute of Economy, Trade and Industry (RIETI).
    2. Chu, Angus C. & Cozzi, Guido & Furukawa, Yuichi & Liao, Chih-Hsing, 2019. "Effects of Minimum Wage on Automation and Innovation in a Schumpeterian Economy," MPRA Paper 95824, University Library of Munich, Germany.
    3. Kohei Okada, 2020. "Dynamic Analysis of Education, Automation, and Economic Growth," Discussion Papers in Economics and Business 20-09, Osaka University, Graduate School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angus C. Chu & Guido Cozzi & Yuichi Furukawa & Chih-Hsing Liao, 2019. "Effects of Minimum Wage on Automation and Innovation in a Schumpeterian Economy," Working Papers 201912, University of Liverpool, Department of Economics.
    2. Chu, Angus C. & Cozzi, Guido & Lai, Ching-Chong & Liao, Chih-Hsing, 2015. "Inflation, R&D and growth in an open economy," Journal of International Economics, Elsevier, vol. 96(2), pages 360-374.
    3. Hu, Ruiyang & Yang, Yibai & Zheng, Zhijie, 2019. "Effects of subsidies on growth and welfare in a quality-ladder model with elastic labor," MPRA Paper 96801, University Library of Munich, Germany.
    4. Chu, Angus C. & Wang, Xilin, 2019. "Effects of R&D Subsidies in a Hybrid Model of Endogenous Growth and Semi-Endogenous Growth," MPRA Paper 94620, University Library of Munich, Germany.
    5. Chu, Angus C. & Furukawa, Yuichi & Mallick, Sushanta & Peretto, Pietro & Wang, Xilin, 2019. "Dynamic Effects of Patent Policy on Innovation and Inequality in a Schumpeterian Economy," MPRA Paper 96240, University Library of Munich, Germany.
    6. Chu, Angus C., 2020. "Patent Policy and Economic Growth: A Survey," MPRA Paper 103643, University Library of Munich, Germany.
    7. Angus Chu & Guido Cozzi, 2018. "Effects of Patents versus R&D subsidies on Income Inequality," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 29, pages 68-84, July.
    8. Chu, Angus C. & Ning, Lei & Zhu, Dongming, 2019. "Human Capital And Innovation In A Monetary Schumpeterian Growth Model," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1875-1894, July.
    9. Chu, Angus C. & Cozzi, Guido & Galli, Silvia, 2012. "Does intellectual monopoly stimulate or stifle innovation?," European Economic Review, Elsevier, vol. 56(4), pages 727-746.
    10. Elie Gray & André Grimaud, 2016. "The Lindahl equilibrium in Schumpeterian growth models," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 101-142, March.
    11. Angus C. Chu & Guido Cozzi, 2014. "R&D And Economic Growth In A Cash‐In‐Advance Economy," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 507-524, May.
    12. Chu, Angus C. & Cozzi, Guido & Furukawa, Yuichi, 2013. "Inflation, Unemployment and Economic Growth in a Schumpeterian Economy," MPRA Paper 50510, University Library of Munich, Germany.
    13. Elie Gray & André Grimaud, 2016. "The Lindahl equilibrium in Schumpeterian growth models," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 101-142, March.
    14. Yibai Yang, 2018. "On the Optimality of IPR Protection with Blocking Patents," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 27, pages 205-230, January.
    15. Chu, Angus C. & Cozzi, Guido, 2019. "Growth: Scale or market-size effects?," Economics Letters, Elsevier, vol. 178(C), pages 13-17.
    16. Chu, Angus C. & Cozzi, Guido & Furukawa, Yuichi & Liao, Chih-Hsing, 2017. "Inflation and economic growth in a Schumpeterian model with endogenous entry of heterogeneous firms," European Economic Review, Elsevier, vol. 98(C), pages 392-409.
    17. Angus C. Chu & Guido Cozzi & Haichao Fang & Yuichi Furukawa & Chih-Hsing Liao, 2019. "Innovation and Inequality in a Monetary Schumpeterian Model with Heterogeneous Households and Firms," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 34, pages 141-164, October.
    18. Guido Cozzi & Silvia Galli, 2014. "Sequential R&D and blocking patents in the dynamics of growth," Journal of Economic Growth, Springer, vol. 19(2), pages 183-219, June.
    19. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," TSE Working Papers 14-469, Toulouse School of Economics (TSE).
    20. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," IDEI Working Papers 821, Institut d'Économie Industrielle (IDEI), Toulouse.

    More about this item

    Keywords

    automation; innovation; economic growth;
    All these keywords.

    JEL classification:

    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • O4 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:88276. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.