IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/88337.html
   My bibliography  Save this paper

Growth: Scale or Market-Size Effects?

Author

Listed:
  • Chu, Angus C.
  • Cozzi, Guido

Abstract

Is the supply of researchers or the demand for technologies more important for innovation? The supply of research labor captures a scale effect, whereas the demand from production labor for technologies captures a market-size effect. We find that both the scale effect and the market-size effect are important for innovation and their relative importance depends on the relative intensity of lab-equipment R&D and knowledge-driven R&D in the innovation process.

Suggested Citation

  • Chu, Angus C. & Cozzi, Guido, 2018. "Growth: Scale or Market-Size Effects?," MPRA Paper 88337, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:88337
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/88337/1/MPRA_paper_88337.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/89710/1/MPRA_paper_89710.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/91350/1/MPRA_paper_91350.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cozzi, Guido & Giordani, Paolo E. & Zamparelli, Luca, 2007. "The refoundation of the symmetric equilibrium in Schumpeterian growth models," Journal of Economic Theory, Elsevier, vol. 136(1), pages 788-797, September.
    2. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders in the Theory of Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(1), pages 43-61.
    3. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    4. Smulders, Sjak & van de Klundert, Theo, 1995. "Imperfect competition, concentration and growth with firm-specific R & D," European Economic Review, Elsevier, vol. 39(1), pages 139-160, January.
    5. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    6. Christopher Laincz & Pietro Peretto, 2006. "Scale effects in endogenous growth theory: an error of aggregation not specification," Journal of Economic Growth, Springer, vol. 11(3), pages 263-288, September.
    7. Peretto, Pietro F., 2018. "Robust endogenous growth," European Economic Review, Elsevier, vol. 108(C), pages 49-77.
    8. Charles I. Jones, 1999. "Growth: With or Without Scale Effects?," American Economic Review, American Economic Association, vol. 89(2), pages 139-144, May.
    9. Cozzi, Guido, 2017. "Endogenous growth, semi-endogenous growth... or both? A simple hybrid model," Economics Letters, Elsevier, vol. 154(C), pages 28-30.
    10. Peretto, Pietro F, 1998. "Technological Change and Population Growth," Journal of Economic Growth, Springer, vol. 3(4), pages 283-311, December.
    11. Chu, Angus C. & Cozzi, Guido, 2019. "Growth: Scale or market-size effects?," Economics Letters, Elsevier, vol. 178(C), pages 13-17.
    12. Lewis Evans & Neil Quigley & Jie Zhang, 2003. "Optimal price regulation in a growth model with monopolistic suppliers of intermediate goods," Canadian Journal of Economics, Canadian Economics Association, vol. 36(2), pages 463-474, May.
    13. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    14. Segerstrom, Paul S, 1998. "Endogenous Growth without Scale Effects," American Economic Review, American Economic Association, vol. 88(5), pages 1290-1310, December.
    15. Cozzi, Guido, 2017. "Combining semi-endogenous and fully endogenous growth: A generalization," Economics Letters, Elsevier, vol. 155(C), pages 89-91.
    16. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    17. Peretto, Pietro F., 1999. "Cost reduction, entry, and the interdependence of market structure and economic growth," Journal of Monetary Economics, Elsevier, vol. 43(1), pages 173-195, February.
    18. Segerstrom, Paul S & Anant, T C A & Dinopoulos, Elias, 1990. "A Schumpeterian Model of the Product Life Cycle," American Economic Review, American Economic Association, vol. 80(5), pages 1077-1091, December.
    19. Peter Howitt, 1999. "Steady Endogenous Growth with Population and R & D Inputs Growing," Journal of Political Economy, University of Chicago Press, vol. 107(4), pages 715-730, August.
    20. Cozzi Guido, 2007. "The Arrow Effect under Competitive R&D," The B.E. Journal of Macroeconomics, De Gruyter, vol. 7(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chu, Angus C. & Cozzi, Guido, 2019. "Growth: Scale or market-size effects?," Economics Letters, Elsevier, vol. 178(C), pages 13-17.
    2. Chu, Angus & Liao, Chih-Hsing, 2023. "Optimal Patent Policy and Wealth Inequality in a Schumpeterian Economy," MPRA Paper 117209, University Library of Munich, Germany.
    3. Barbara Annicchiarico & Valentina Antonaroli & Alessandra Pelloni, 2022. "Optimal factor taxation in a scale free model of vertical innovation," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 794-830, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Angus C. & Wang, Xilin, 2022. "Effects Of R&D Subsidies In A Hybrid Model Of Endogenous Growth And Semi-Endogenous Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 26(3), pages 813-832, April.
    2. Gray, Elie & Grimaud, André, 2016. "Using the Salop Circle to Study Scale Effects in Schumpeterian Growth Models: Why Inter-sectoral Knowledge Diffusion Matters," TSE Working Papers 16-676, Toulouse School of Economics (TSE).
    3. Elie Gray & André Grimaud, 2016. "The Lindahl equilibrium in Schumpeterian growth models," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 101-142, March.
    4. Elie Gray & André Grimaud, 2016. "Using the Salop Circle to Study Scale Effects in Schumpeterian Growth Models: Why Inter-sectoral Knowledge Diffusion Matters," CESifo Working Paper Series 6021, CESifo.
    5. Angus C. Chu & Guido Cozzi & Haichao Fang & Yuichi Furukawa & Chih-Hsing Liao, 2019. "Innovation and Inequality in a Monetary Schumpeterian Model with Heterogeneous Households and Firms," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 34, pages 141-164, October.
    6. Guido Cozzi & Silvia Galli, 2014. "Sequential R&D and blocking patents in the dynamics of growth," Journal of Economic Growth, Springer, vol. 19(2), pages 183-219, June.
    7. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," TSE Working Papers 14-469, Toulouse School of Economics (TSE).
    8. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," IDEI Working Papers 821, Institut d'Économie Industrielle (IDEI), Toulouse.
    9. Elie Gray & André Grimaud, 2014. "The Lindahl Equilibrium in Schumpeterian Growth Models: Knowledge Diffusion, Social Value of Innovations and Optimal R&D Incentives," CESifo Working Paper Series 4678, CESifo.
    10. Angus Chu & Guido Cozzi & Chih-Hsing Liao, 2013. "Endogenous fertility and human capital in a Schumpeterian growth model," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(1), pages 181-202, January.
    11. Chu, Angus C. & Cozzi, Guido & Lai, Ching-Chong & Liao, Chih-Hsing, 2015. "Inflation, R&D and growth in an open economy," Journal of International Economics, Elsevier, vol. 96(2), pages 360-374.
    12. Angus C. Chu & Guido Cozzi, 2014. "R&D And Economic Growth In A Cash‐In‐Advance Economy," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(2), pages 507-524, May.
    13. Angus C. Chu & Yuichi Furukawa & Sushanta Mallick & Pietro Peretto & Xilin Wang, 2021. "Dynamic effects of patent policy on innovation and inequality in a Schumpeterian economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(4), pages 1429-1465, June.
    14. Guido Cozzi & Silvia Galli, 2009. "Upstream Innovation Protection: Common Law Evolution and the Dynamics of Wage Inequality," Working Papers 2009_20, Business School - Economics, University of Glasgow.
    15. Chu, Angus C. & Fan, Haichao & Wang, Xilin, 2020. "Status-seeking culture and development of capitalism," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 275-290.
    16. Chu, Angus C. & Furukawa, Yuichi, 2011. "On the optimal mix of patent instruments," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1964-1975.
    17. Angus C. Chu & Guido Cozzi & Haichao Fan & Yuichi Furukawa, 2021. "Inflation, Unemployment, and Economic Growth in a Schumpeterian Economy," Scandinavian Journal of Economics, Wiley Blackwell, vol. 123(3), pages 874-909, July.
    18. Ang, James B., 2010. "Financial Reforms, Patent Protection, and Knowledge Accumulation in India," World Development, Elsevier, vol. 38(8), pages 1070-1081, August.
    19. Chu, Angus C. & Cozzi, Guido & Galli, Silvia, 2012. "Does intellectual monopoly stimulate or stifle innovation?," European Economic Review, Elsevier, vol. 56(4), pages 727-746.
    20. Minniti, Antonio & Venturini, Francesco, 2017. "The long-run growth effects of R&D policy," Research Policy, Elsevier, vol. 46(1), pages 316-326.

    More about this item

    Keywords

    innovation; economic growth; scale effects; market-size effects;
    All these keywords.

    JEL classification:

    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • O4 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:88337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.