IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/57861.html
   My bibliography  Save this paper

Spatial Aspects of Innovation Activity in the US

Author

Listed:
  • Drivas, Kyriakos
  • Economidou, Claire
  • Karkalakos, Sotiris

Abstract

This paper studies the effects of spatial concentration of innovation activity on local production of patents in the US. In doing so, we augment the standard knowledge production function with a structure that allows for spatial effects, accounting along with bilateral also for multilateral influences across states. Our findings corroborate with past evidence on the important role of state’s own R&D stock and human capital in producing new inventions. In addition, external knowledge, via spatial interactions, is also a purveyor of local innovation production. The effect is stronger when we consider spatial influences from all states, in particular from the most innovative ones, and to a lesser extent from close neighboring states. Finally, spillovers are more likely to occur between states with similar technological specialization, which share common technological knowledge and pour similar technological effort.

Suggested Citation

  • Drivas, Kyriakos & Economidou, Claire & Karkalakos, Sotiris, 2014. "Spatial Aspects of Innovation Activity in the US," MPRA Paper 57861, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:57861
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/57861/1/MPRA_paper_57861.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Rachel Griffith & Stephen Redding & John Van Reenen, 2004. "Mapping the Two Faces of R&D: Productivity Growth in a Panel of OECD Industries," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 883-895, November.
    3. Deltas, George & Karkalakos, Sotiris, 2013. "Similarity of R&D activities, physical proximity, and R&D spillovers," Regional Science and Urban Economics, Elsevier, vol. 43(1), pages 124-131.
    4. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    5. Baltagi, Badi H. & Liu, Long, 2011. "Instrumental variable estimation of a spatial autoregressive panel model with random effects," Economics Letters, Elsevier, vol. 111(2), pages 135-137, May.
    6. Laura Bottazzi & Giovanni Peri, 2007. "The International Dynamics of R&D and Innovation in the Long Run and in The Short Run," Economic Journal, Royal Economic Society, vol. 117(518), pages 486-511, March.
    7. Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
    8. Wagner, Alfred, 1891. "Marshall's Principles of Economics," History of Economic Thought Articles, McMaster University Archive for the History of Economic Thought, vol. 5, pages 319-338.
    9. Dominique Guellec & Bruno Van Pottelsberghe de la Potterie, 2004. "From R&D to Productivity Growth: Do the Institutional Settings and the Source of Funds of R&D Matter?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 353-378, July.
    10. Pakes, Ariel & Griliches, Zvi, 1980. "Patents and R&D at the firm level: A first report," Economics Letters, Elsevier, vol. 5(4), pages 377-381.
    11. Eckhardt Bode, 2004. "The spatial pattern of localized R&D spillovers: an empirical investigation for Germany," Journal of Economic Geography, Oxford University Press, vol. 4(1), pages 43-64, January.
    12. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    13. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
    14. Olivier Parent & James P. LeSage, 2008. "Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 235-256.
    15. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    16. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    17. Branstetter, Lee G., 2001. "Are knowledge spillovers international or intranational in scope?: Microeconometric evidence from the U.S. and Japan," Journal of International Economics, Elsevier, vol. 53(1), pages 53-79, February.
    18. Redding, Stephen, 1996. "The Low-Skill, Low-Quality Trap: Strategic Complementarities between Human Capital and R&D," Economic Journal, Royal Economic Society, vol. 106(435), pages 458-470, March.
    19. Keller, Wolfgang, 2002. "Trade and the Transmission of Technology," Journal of Economic Growth, Springer, vol. 7(1), pages 5-24, March.
    20. Hall, Bronwyn H & Ziedonis, Rosemarie Ham, 2001. "The Patent Paradox Revisited: An Empirical Study of Patenting in the U.S. Semiconductor Industry, 1979-1995," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 101-128, Spring.
    21. Giovanni Peri, 2005. "Determinants of Knowledge Flows and Their Effect on Innovation," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 308-322, May.
    22. Cameron, Gavin & Proudman, James & Redding, Stephen, 2005. "Technological convergence, R&D, trade and productivity growth," European Economic Review, Elsevier, vol. 49(3), pages 775-807, April.
    23. Blomstrom, Magnus & Kokko, Ari, 1998. "Multinational Corporations and Spillovers," Journal of Economic Surveys, Wiley Blackwell, vol. 12(3), pages 247-277, July.
    24. Romer, Paul M., 1990. "Human capital and growth: Theory and evidence," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 32(1), pages 251-286, January.
    25. Philippe Aghion & Peter Howitt, 1997. "Endogenous Growth Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011662, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Dellis, 2020. "Knowledge Diffusion and Financial Development Thresholds," GreeSE – Hellenic Observatory Papers on Greece and Southeast Europe 154, Hellenic Observatory, LSE.
    2. Mohammad Reza Jalilvand & Leila Nasrolahi Vosta & Rashid Khalilakbar & Javad Khazaei Pool & Reihaneh Alsadat Tabaeeian, 2019. "The Effects of Internal Marketing and Entrepreneurial Orientation on Innovation in Family Businesses," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(3), pages 1064-1079, September.
    3. Yongfeng Zhu & Zilong Wang & Shilei Qiu & Lingling Zhu, 2019. "Effects of Environmental Regulations on Technological Innovation Efficiency in China’s Industrial Enterprises: A Spatial Analysis," Sustainability, MDPI, Open Access Journal, vol. 11(7), pages 1-19, April.
    4. Hu, Yong & Fisher-Vanden, Karen & Su, Baozhong, 2020. "Technological spillover through industrial and regional linkages: Firm-level evidence from China," Economic Modelling, Elsevier, vol. 89(C), pages 523-545.
    5. Dellis, Konstantinos, 2020. "Knowledge diffusion and financial development thresholds," LSE Research Online Documents on Economics 107882, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drivas, Kyriakos & Economidou, Claire & Karamanis, Dimitrios & Sanders, Mark, 2020. "Mobility of highly skilled individuals and local innovation activity," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    2. Drivas, Kyriakos & Economidou, Claire & Karkalakos, Sotiris & Tsionas, Efthymios G., 2016. "Mobility of knowledge and local innovation activity," European Economic Review, Elsevier, vol. 85(C), pages 39-61.
    3. Ioannis Bournakis & Dimitris Christopoulos & Sushanta Mallick, 2018. "Knowledge Spillovers And Output Per Worker: An Industry‐Level Analysis For Oecd Countries," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 1028-1046, April.
    4. Bettina Becker, 2013. "The Determinants of R&D Investment: A Survey of the Empirical Research," Discussion Paper Series 2013_09, Department of Economics, Loughborough University, revised Sep 2013.
    5. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    6. Peri, Giovanni, 2003. "Knowledge Flows, R&D Spillovers and Innovation," ZEW Discussion Papers 03-40, ZEW - Leibniz Centre for European Economic Research.
    7. Neil Foster-McGregor, 2012. "Innovation and Technology Transfer across Countries," wiiw Research Reports 380, The Vienna Institute for International Economic Studies, wiiw.
    8. Giuseppe Medda & Claudio Piga, 2014. "Technological spillovers and productivity in Italian manufacturing firms," Journal of Productivity Analysis, Springer, vol. 41(3), pages 419-434, June.
    9. Harald Badinger & Peter Egger, 2016. "Productivity Spillovers Across Countries and Industries: New Evidence From OECD Countries," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(4), pages 501-521, August.
    10. Johanna Vogel, 2015. "The two faces of R&D and human capital: Evidence from Western European regions," Papers in Regional Science, Wiley Blackwell, vol. 94(3), pages 525-551, August.
    11. López-Pueyo, Carmen & Barcenilla-Visús, Sara & Sanaú, Jaime, 2008. "International R&D spillovers and manufacturing productivity: A panel data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 19(2), pages 152-172, June.
    12. Dongwoo Kang & Sandy Dall’erba, 2016. "Exploring the spatially varying innovation capacity of the US counties in the framework of Griliches’ knowledge production function: a mixed GWR approach," Journal of Geographical Systems, Springer, vol. 18(2), pages 125-157, April.
    13. Drivas, Kyriakos & Economidou, Claire & Tsionas, Efthymios G., 2014. "A Poisson Stochastic Frontier Model with Finite Mixture Structure," MPRA Paper 57485, University Library of Munich, Germany.
    14. Anon Higon, Dolores, 2007. "The impact of R&D spillovers on UK manufacturing TFP: A dynamic panel approach," Research Policy, Elsevier, vol. 36(7), pages 964-979, September.
    15. Ernest Miguélez & Rosina Moreno, 2013. "Do Labour Mobility and Technological Collaborations Foster Geographical Knowledge Diffusion? The Case of European Regions," Growth and Change, Wiley Blackwell, vol. 44(2), pages 321-354, June.
    16. Ugur, Mehmet & Trushin, Eshref & Solomon, Edna & Guidi, Francesco, 2016. "R&D and productivity in OECD firms and industries: A hierarchical meta-regression analysis," Research Policy, Elsevier, vol. 45(10), pages 2069-2086.
    17. Shang, Qingyan & Poon, Jessie P.H. & Yue, Qingtang, 2012. "The role of regional knowledge spillovers on China's innovation," China Economic Review, Elsevier, vol. 23(4), pages 1164-1175.
    18. Lopez-Rodriguez, Jesus & Martinez-Lopez, Diego, 2017. "Looking beyond the R&D effects on innovation: The contribution of non-R&D activities to total factor productivity growth in the EU," Structural Change and Economic Dynamics, Elsevier, vol. 40(C), pages 37-45.
    19. Feldman, Maryann P. & Kogler, Dieter F., 2010. "Stylized Facts in the Geography of Innovation," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 381-410, Elsevier.
    20. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 3, pages 1-72.

    More about this item

    Keywords

    patents; innovation; knowledge production; spatial;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:57861. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.