IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Dynamic Econometric Testing of Climate Change and of its Causes

  • Travaglini, Guido

The goal of this paper is to empirically test for structural breaks of world mean temperatures that may have ignited at some date the phenomenon known as “Climate Change” or “Global Warming”. Estimation by means of the dynamic Generalized Method of Moments is conducted on a large dataset spanning the recordable period from 1850 until present, and different tests and selection procedures among competing model specifications are utilized, such as Principal Component and Principal Factor Analysis, instrument validity, overtime changes in parameters and in shares of both natural and anthropogenic forcings. The results of estimation unmistakably show no involvement of anthropogenic forcings and no occurrence of significant breaks in world mean temperatures. Hence the hypothesis of a climate change in the last 150 years, suggested by the advocates of Global Warming, is rejected. Pacific Decadal Oscillations, sunspots and the major volcanic eruptions play the lion’s share in determining world temperatures, the first being a dimmer and the others substantial warmers.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 23600.

in new window

Date of creation: 30 Jun 2010
Date of revision:
Handle: RePEc:pra:mprapa:23600
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, 07.
  2. Pierre Perron & Tomoyoshi Yabu, 2007. "Estimating Deterministic Trend with an Integrated or Stationary Noise Component," Boston University - Department of Economics - Working Papers Series WP2007-020, Boston University - Department of Economics.
  3. Eric Zivot & Donald W.K. Andrews, 1990. "Further Evidence on the Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Cowles Foundation Discussion Papers 944, Cowles Foundation for Research in Economics, Yale University.
  4. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
  5. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
  6. Bai, Jushan & Ng, Serena, 2010. "Instrumental Variable Estimation In A Data Rich Environment," Econometric Theory, Cambridge University Press, vol. 26(06), pages 1577-1606, December.
  7. Noriega, Antonio E. & Ventosa Santaulària, Daniel, 2005. "Spurious regression under broken trend stationarity," MPRA Paper 58768, University Library of Munich, Germany.
  8. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
  9. Vogelsang, T.J. & Perron, P., 1994. "Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time," Cahiers de recherche 9422, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  10. David I. Stern, 2004. "A Multicointegration Model of Global Climate Change," Rensselaer Working Papers in Economics 0406, Rensselaer Polytechnic Institute, Department of Economics.
  11. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules And Macroeconomic Stability: Evidence And Some Theory," The Quarterly Journal of Economics, MIT Press, vol. 115(1), pages 147-180, February.
  12. Peter C.B. Phillips, 1985. "Understanding Spurious Regressions in Econometrics," Cowles Foundation Discussion Papers 757, Cowles Foundation for Research in Economics, Yale University.
  13. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
  14. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
  15. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-56, July.
  16. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-29, October.
  17. Clive Granger & Namwon Hyung & Yongil Jeon, 2001. "Spurious regressions with stationary series," Applied Economics, Taylor & Francis Journals, vol. 33(7), pages 899-904.
  18. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1350-1366, December.
  19. Kleibergen, Frank & Mavroeidis, Sophocles, 2009. "Weak Instrument Robust Tests in GMM and the New Keynesian Phillips Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 293-311.
  20. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2006. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Cowles Foundation Discussion Papers 1545, Cowles Foundation for Research in Economics, Yale University.
  21. Stern, David I., 2002. "Explaining changes in global sulfur emissions: an econometric decomposition approach," Ecological Economics, Elsevier, vol. 42(1-2), pages 201-220, August.
  22. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
  23. Vogelsang, Timothy J., 1997. "Wald-Type Tests for Detecting Breaks in the Trend Function of a Dynamic Time Series," Econometric Theory, Cambridge University Press, vol. 13(06), pages 818-848, December.
  24. Anindya Banerjee & Robin L. Lumsdaine & James H. Stock, 1990. "Recursive and Sequential Tests of the Unit Root and Trend Break Hypothesis: Theory and International Evidence," NBER Working Papers 3510, National Bureau of Economic Research, Inc.
  25. Whitney Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  26. Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
  27. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(02), pages 222-240, April.
  28. Anatolyev, Stanislav & Gospodinov, Nikolay, 2011. "Specification Testing In Models With Many Instruments," Econometric Theory, Cambridge University Press, vol. 27(02), pages 427-441, April.
  29. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  30. Morten O. Ravn & Harald Uhlig, 2001. "On Adjusting the HP-Filter for the Frequency of Observations," CESifo Working Paper Series 479, CESifo Group Munich.
  31. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.
  32. Whitney Newey & Richard Smith, 2003. "Higher order properties of GMM and generalised empirical likelihood estimators," CeMMAP working papers CWP04/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  33. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
  34. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
  35. Richard Smith, 2004. "Automatic positive semi-definite HAC covariance matrix and GMM estimation," CeMMAP working papers CWP17/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  36. Motohiro Yogo, 2004. "Estimating the Elasticity of Intertemporal Substitution When Instruments Are Weak," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 797-810, August.
  37. Hansen, Bruce E & West, Kenneth D, 2002. "Generalized Method of Moments and Macroeconomics," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 460-69, October.
  38. Kim, Dukpa & Perron, Pierre, 2009. "Unit root tests allowing for a break in the trend function at an unknown time under both the null and alternative hypotheses," Journal of Econometrics, Elsevier, vol. 148(1), pages 1-13, January.
  39. Sun, Yixiao, 2003. "A Convergent t-statistic in Spurious Regressions," University of California at San Diego, Economics Working Paper Series qt150457tv, Department of Economics, UC San Diego.
  40. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  41. Andrews, Donald W.K. & Stock, James H., 2007. "Testing with many weak instruments," Journal of Econometrics, Elsevier, vol. 138(1), pages 24-46, May.
  42. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-80, July.
  43. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
  44. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, 05.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:23600. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.