IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Evaluating Multi-Step System Forecasts with Relatively Few Forecast-Error Observations

Listed author(s):
  • David Hendry
  • Andrew B. Martinez

Abstract: This paper develops a new approach for evaluating multi-step system forecasts with relatively few forecast-error observations. It extends Clements and Hendry (1993a) using Abadir et al.(2014) to generate "design-free" estimates of the general matrix of the forecast-error second-moment when there are relatively few forecast-error observations. Simulations show that the usefulness of alternative methods deteriorates when their assumptions are violated. The new approach compares well against these methods and provides correct forecast rankings.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.economics.ox.ac.uk/materials/papers/14425/paper-784.pdf
Download Restriction: no

Paper provided by University of Oxford, Department of Economics in its series Economics Series Working Papers with number 784.

as
in new window

Length:
Date of creation: 08 Mar 2016
Handle: RePEc:oxf:wpaper:784
Contact details of provider: Postal:
Manor Rd. Building, Oxford, OX1 3UQ

Web page: https://www.economics.ox.ac.uk/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. De Gooijer, Jan G. & Vidiella-i-Anguera, Antoni, 2004. "Forecasting threshold cointegrated systems," International Journal of Forecasting, Elsevier, vol. 20(2), pages 237-253.
  2. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
  3. Tara M. Sinclair & H. O. Stekler & Warren Carnow, 2012. "A new approach for evaluating economic forecasts," Economics Bulletin, AccessEcon, vol. 32(3), pages 2332-2342.
  4. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
  5. Anderson, Richard G. & Hoffman, Dennis L. & Rasche, Robert H., 2002. "Reply to the comments on 'A vector error-correction forecasting model of the U.S. economy'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 613-614, December.
  6. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2012. "Model selection when there are multiple breaks," Journal of Econometrics, Elsevier, vol. 169(2), pages 239-246.
  7. Clements, Michael P & Hendry, David F, 1995. "Forecasting in Cointegration Systems," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 127-146, April-Jun.
  8. Bårdsen, Gunnar & den Reijer, Ard & Jonasson, Patrik & Nymoen, Ragnar, 2012. "MOSES: Model for studying the economy of Sweden," Economic Modelling, Elsevier, vol. 29(6), pages 2566-2582.
  9. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
  10. Felix Pretis & Max Roser, 2016. "Carbon Dioxide Emission-Intensity in Climate Projections: Comparing the Observational Record to Socio-Economic Scenarios," Economics Series Working Papers 810, University of Oxford, Department of Economics.
  11. Anderson, Richard G. & Hoffman, Dennis L. & Rasche, Robert H., 2002. "A vector error-correction forecasting model of the US economy," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 569-598, December.
  12. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, August.
  13. Hoffman, Dennis L & Rasche, Robert H, 1996. "Assessing Forecast Performance in a Cointegrated System," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 495-517, Sept.-Oct.
  14. Sinclair, Tara M. & Stekler, H.O. & Carnow, Warren, 2015. "Evaluating a vector of the Fed’s forecasts," International Journal of Forecasting, Elsevier, vol. 31(1), pages 157-164.
  15. Bowsher, Clive G. & Meeks, Roland, 2008. "The Dynamics of Economic Functions: Modeling and Forecasting the Yield Curve," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1419-1437.
  16. Paap, Richard & Franses, Philip Hans & Hoek, Henk, 1997. "Mean shifts, unit roots and forecasting seasonal time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 357-368, September.
  17. Burgess, Stephen & Fernandez-Corugedo, Emilio & Groth, Charlotta & Harrison, Richard & Monti, Francesca & Theodoridis, Konstantinos & Waldron, Matt, 2013. "The Bank of England's forecasting platform: COMPASS, MAPS, EASE and the suite of models," Bank of England working papers 471, Bank of England.
  18. Vahid, Farshid & Issler, Joao Victor, 2002. "The importance of common cyclical features in VAR analysis: a Monte-Carlo study," Journal of Econometrics, Elsevier, vol. 109(2), pages 341-363, August.
  19. Clements, Michael P. & Hendry, David F., 1997. "An empirical study of seasonal unit roots in forecasting," International Journal of Forecasting, Elsevier, vol. 13(3), pages 341-355, September.
  20. Zeng Tian & Swanson Norman R., 1998. "Predictive Evaluation of Econometric Forecasting Models in Commodity Futures Markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-21, January.
  21. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
  22. Timothy L. McMurry & Dimitris N. Politis, 2010. "Banded and tapered estimates for autocovariance matrices and the linear process bootstrap," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 471-482, November.
  23. Abadir, Karim M. & Distaso, Walter & Žikeš, Filip, 2014. "Design-free estimation of variance matrices," Journal of Econometrics, Elsevier, vol. 181(2), pages 165-180.
  24. Schmidt, Peter, 1974. "The Asymptotic Distribution of Forecasts in the Dynamic Simulation of an Econometric Model," Econometrica, Econometric Society, vol. 42(2), pages 303-309, March.
  25. Martinez, Andrew B., 2015. "How good are US government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 31(2), pages 312-324.
  26. De Gooijer, Jan G. & Ray, Bonnie K., 2003. "Modeling vector nonlinear time series using POLYMARS," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 73-90, February.
  27. McMurry, Timothy L & Politis, D N, 2010. "Banded and Tapered Estimates for Autocovariance Matrices and the Linear Process Bootstrap," University of California at San Diego, Economics Working Paper Series qt5h9259mb, Department of Economics, UC San Diego.
  28. Clements, Michael P. & Galvao, Ana Beatriz, 2004. "A comparison of tests of nonlinear cointegration with application to the predictability of US interest rates using the term structure," International Journal of Forecasting, Elsevier, vol. 20(2), pages 219-236.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:784. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anne Pouliquen)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.