IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Modelling income processes with lots of heterogeneity

  • Martin Browning
  • Mette Ejrnaes

All empirical models of earnings processes in the literature assume a good deal of homogeneity. In contrast to this we model earnings processes allowing for lots of heterogeneity between agents. We also introduce an extension to the linear ARMA model that allows that the initial convergence to the long run may be different from that implied by the conventional ARMA model. This is particularly important for unit root tests which are actually tests of a composite of two independent hypotheses. We fit our models to a variety of statistics including most of those considered by previous investigators. We use a sample drawn from the PSID, and focus on white males with a high school degree. Despite this observable homogeneity we find much greater latent heterogeneity than previous investigators. We show that allowance for heterogeneity makes substantial differences to estimates of model parameters and to outcomes of interest. Additionally we find strong evidence against the hypothesis that any worker has a unit root.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by University of Oxford, Department of Economics in its series Economics Series Working Papers with number 285.

in new window

Date of creation: 01 Oct 2006
Date of revision:
Handle: RePEc:oxf:wpaper:285
Contact details of provider: Postal: Manor Rd. Building, Oxford, OX1 3UQ
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
  2. Blundell, R. & Bond, S., 1995. "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models," Economics Papers 104, Economics Group, Nuffield College, University of Oxford.
  3. Lee, Bong-Soo & Ingram, Beth Fisher, 1991. "Simulation estimation of time-series models," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 197-205, February.
  4. Moshe Buchinsky & Jennifer Hunt, 1999. "Wage Mobility In The United States," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 351-368, August.
  5. George Hall & John Rust, 2002. "Econometric Methods for Endogenously Sampled Time Series: The Case of Commodity Price Speculation in the Steel Market," NBER Technical Working Papers 0278, National Bureau of Economic Research, Inc.
  6. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54.
  7. Costas Meghir & Luigi Pistaferri, 2004. "Income Variance Dynamics and Heterogeneity," Econometrica, Econometric Society, vol. 72(1), pages 1-32, 01.
  8. Carroll, Christopher D. & Samwick, Andrew A., 1997. "The nature of precautionary wealth," Journal of Monetary Economics, Elsevier, vol. 40(1), pages 41-71, September.
  9. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-52, July.
  10. Francis X. Diebold & Til Schuermann, 1996. "Exact Maximum Likelihood Estimation of Observation-Driven Econometric Models," NBER Technical Working Papers 0194, National Bureau of Economic Research, Inc.
  11. Martin Browning & Annamaria Lusardi, 1996. "Household Saving: Micro Theories and Micro Facts," Journal of Economic Literature, American Economic Association, vol. 34(4), pages 1797-1855, December.
  12. Arellano, Manuel & Carrasco, Raquel, 2003. "Binary choice panel data models with predetermined variables," Journal of Econometrics, Elsevier, vol. 115(1), pages 125-157, July.
  13. J. Dominitz & C. F. Manski, . "Using expectations data to study subjective income expectations," Institute for Research on Poverty Discussion Papers 1050-94, University of Wisconsin Institute for Research on Poverty.
  14. Lillard, Lee A & Willis, Robert J, 1978. "Dynamic Aspects of Earning Mobility," Econometrica, Econometric Society, vol. 46(5), pages 985-1012, September.
  15. Donald A. Walker (ed.), 2000. "Equilibrium," Books, Edward Elgar, volume 0, number 1585, March.
  16. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
  17. Javier Alvarez & Martin Browning & Mette Ejrnæs, 2002. "Modelling income processes with lots of heterogeneity," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 D2-3, International Conferences on Panel Data.
  18. Abowd, John M & Card, David, 1989. "On the Covariance Structure of Earnings and Hours Changes," Econometrica, Econometric Society, vol. 57(2), pages 411-45, March.
  19. Mark Yuying An & Ming Liu, 1996. "Using Indirect Inference to Solve the Initial Conditions Problem," Econometrics 9611004, EconWPA.
  20. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
  21. Gourieroux, C. & Monfort, A. & Renault, E., 1992. "Indirect Inference," Papers 92.279, Toulouse - GREMAQ.
  22. Baker, Michael, 1997. "Growth-Rate Heterogeneity and the Covariance Structure of Life-Cycle Earnings," Journal of Labor Economics, University of Chicago Press, vol. 15(2), pages 338-75, April.
  23. Chamberlain, Gary, 1980. "Analysis of Covariance with Qualitative Data," Review of Economic Studies, Wiley Blackwell, vol. 47(1), pages 225-38, January.
  24. Kiviet, Jan F & Kramer, Walter, 1992. "Bias of SDE 2 in the Linear Regression Model with Correlated Errors," The Review of Economics and Statistics, MIT Press, vol. 74(2), pages 362-65, May.
  25. Peter Gottschalk, 1997. "Inequality, Income Growth, and Mobility: The Basic Facts," Journal of Economic Perspectives, American Economic Association, vol. 11(2), pages 21-40, Spring.
  26. Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
  27. John C. Hause, 1977. "The Covariance Structure of Earnings and the On-The-Job Training Hypothesis," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 6, number 4, pages 335-365 National Bureau of Economic Research, Inc.
  28. Peter Gottschalk & Robert Moffitt, 1994. "The Growth of Earnings Instability in the U.S. Labor Market," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 25(2), pages 217-272.
  29. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
  30. Jan F. Kiviet & Garry D.A. Phillips, 1998. "Degrees of freedom adjustment for disturbance variance estimators in dynamic regression models," Econometrics Journal, Royal Economic Society, vol. 1(RegularPa), pages 44-70.
  31. Neal, Derek & Rosen, Sherwin, 2000. "Theories of the distribution of earnings," Handbook of Income Distribution, in: A.B. Atkinson & F. Bourguignon (ed.), Handbook of Income Distribution, edition 1, volume 1, chapter 7, pages 379-427 Elsevier.
  32. MaCurdy, Thomas E., 1982. "The use of time series processes to model the error structure of earnings in a longitudinal data analysis," Journal of Econometrics, Elsevier, vol. 18(1), pages 83-114, January.
  33. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, 07.
  34. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S63-84, Suppl. De.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:285. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Monica Birds)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.