IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02058272.html

Through the Looking Glass: Indirect Inference via Simple Equilibria

Author

Listed:
  • Laurent E. Calvet

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • Veronika Czellar

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper proposes an indirect inference (Gourieroux, Monfort and Renault, 1993; Smith, 1993) estimation method for a large class of dynamic equilibrium models. Our approach is based on the observation that the econometric structure of these systems naturally generates auxiliary equilibria that can serve as building blocks for estimation. We use this insight to develop an accurate estimator for the long-run risk model of Bansal and Yaron (2004). We demonstrate the accuracy of our method by Monte Carlo simulation and estimate the long-run risk model on U.S. data. We also illustrate the good performance of the methodology on an asset pricing model with investor learning.

Suggested Citation

  • Laurent E. Calvet & Veronika Czellar, 2014. "Through the Looking Glass: Indirect Inference via Simple Equilibria," Working Papers hal-02058272, HAL.
  • Handle: RePEc:hal:wpaper:hal-02058272
    DOI: 10.2139/ssrn.2444445
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claude Bergeron & Tov Assogbavi & Jean-pierre Gueyie, 2020. "Conditional capital asset pricing model, long-run risk, and stock valuation," Economics Bulletin, AccessEcon, vol. 40(1), pages 77-86.
    2. Grammig, Joachim & Küchlin, Eva-Maria, 2017. "A two-step indirect inference approach to estimate the long-run risk asset pricing model," CFR Working Papers 17-01, University of Cologne, Centre for Financial Research (CFR).
    3. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.
    4. Gael M. Martin & Brendan P.M. McCabe & David T. Frazier & Worapree Maneesoonthorn & Christian P. Robert, 2016. "Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models," Monash Econometrics and Business Statistics Working Papers 09/16, Monash University, Department of Econometrics and Business Statistics.
    5. Forneron, Jean-Jacques, 2024. "Detecting identification failure in moment condition models," Journal of Econometrics, Elsevier, vol. 238(1).
    6. Czellar, Veronika & Frazier, David T. & Renault, Eric, 2022. "Approximate maximum likelihood for complex structural models," Journal of Econometrics, Elsevier, vol. 231(2), pages 432-456.
    7. Grammig, Joachim & Küchlin, Eva-Maria, 2018. "A two-step indirect inference approach to estimate the long-run risk asset pricing model," Journal of Econometrics, Elsevier, vol. 205(1), pages 6-33.
    8. Lee, Minjoon, 2023. "Portfolio allocation over the life cycle with multiple late-in-life saving motives," Journal of Empirical Finance, Elsevier, vol. 74(C).
    9. Jules Tinang & Nour Meddahi, 2016. "GMM estimation of the Long Run Risks model," 2016 Meeting Papers 1107, Society for Economic Dynamics.
    10. Czellar, Veronika & Garcia, René & Le Grand, François, 2025. "Uncovering asset market participation from household consumption and income," Journal of Econometrics, Elsevier, vol. 248(C).
    11. Veronika Czellar & David T. Frazier & Eric Renault, 2020. "Approximate Maximum Likelihood for Complex Structural Models," Papers 2006.10245, arXiv.org.
    12. David T. Frazier & Eric Renault, 2016. "Indirect Inference With(Out) Constraints," Papers 1607.06163, arXiv.org, revised Aug 2019.
    13. Alperovych, Yan & Cumming, Douglas & Czellar, Veronika & Groh, Alexander, 2021. "M&A rumors about unlisted firms," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1324-1339.
    14. Czellar, Veronika & Frazier, David T. & Renault, Eric, 2021. "Approximate Maximum Likelihood for Complex Structural Models," The Warwick Economics Research Paper Series (TWERPS) 1337, University of Warwick, Department of Economics.
    15. Grammig, Joachim & Küchlin, Eva-Maria, 2017. "A two-step indirect inference approach to estimate the long-run risk asset pricing model," CFS Working Paper Series 572, Center for Financial Studies (CFS).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02058272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.