IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/25573.html
   My bibliography  Save this paper

Demand for Crash Insurance, Intermediary Constraints, and Risk Premia in Financial Markets

Author

Listed:
  • Hui Chen
  • Scott Joslin
  • Sophie X. Ni

Abstract

We propose a new measure of financial intermediary constraints based on how the intermediaries manage their tail risk exposures. Using data for the trading activities in the market of deep out-of-the-money S&P 500 put options, we identify periods when the variations in the net amount of trading between financial intermediaries and public investors are likely to be mainly driven by shocks to intermediary constraints. We then infer tightness of intermediary constraints from the quantities of option trading during such periods. A tightening of intermediary constraint according to our measure is associated with increasing option expensiveness, higher risk premia for a wide range of financial assets, deterioration in funding liquidity, and broker-dealer deleveraging.

Suggested Citation

  • Hui Chen & Scott Joslin & Sophie X. Ni, 2019. "Demand for Crash Insurance, Intermediary Constraints, and Risk Premia in Financial Markets," NBER Working Papers 25573, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:25573
    Note: AP CF EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w25573.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    3. Tobias Adrian & Nina Boyarchenko, 2012. "Intermediary leverage cycles and financial stability," Staff Reports 567, Federal Reserve Bank of New York.
    4. Jean-Sébastien Fontaine & René Garcia, 2012. "Bond Liquidity Premia," The Review of Financial Studies, Society for Financial Studies, vol. 25(4), pages 1207-1254.
    5. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    7. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    8. Peter Reinhard Hansen & Allan Timmermann, 2012. "Choice of Sample Split in Out-of-Sample Forecast Evaluation," CREATES Research Papers 2012-43, Department of Economics and Business Economics, Aarhus University.
    9. Hui Chen & Scott Joslin & Ngoc-Khanh Tran, 2012. "Rare Disasters and Risk Sharing with Heterogeneous Beliefs," The Review of Financial Studies, Society for Financial Studies, vol. 25(7), pages 2189-2224.
    10. Bryan Kelly & Hao Jiang, 2014. "Editor's Choice Tail Risk and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 27(10), pages 2841-2871.
    11. Gromb, Denis & Vayanos, Dimitri, 2002. "Equilibrium and welfare in markets with financially constrained arbitrageurs," Journal of Financial Economics, Elsevier, vol. 66(2-3), pages 361-407.
    12. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393, Elsevier.
    13. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    14. Grace Xing Hu & Jun Pan & Jiang Wang, 2013. "Noise as Information for Illiquidity," Journal of Finance, American Finance Association, vol. 68(6), pages 2341-2382, December.
    15. Tobias Adrian & Erkko Etula & Tyler Muir, 2014. "Financial Intermediaries and the Cross-Section of Asset Returns," Journal of Finance, American Finance Association, vol. 69(6), pages 2557-2596, December.
    16. Jun Pan & Allen M. Poteshman, 2006. "The Information in Option Volume for Future Stock Prices," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 871-908.
    17. Markus K. Brunnermeier & Lasse Heje Pedersen, 2009. "Market Liquidity and Funding Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2201-2238, June.
    18. Bernanke, Ben & Gertler, Mark, 1989. "Agency Costs, Net Worth, and Business Fluctuations," American Economic Review, American Economic Association, vol. 79(1), pages 14-31, March.
    19. repec:bla:jfinan:v:59:y:2004:i:2:p:711-753 is not listed on IDEAS
    20. Lauren Cohen & Karl B. Diether & Christopher J. Malloy, 2007. "Supply and Demand Shifts in the Shorting Market," Journal of Finance, American Finance Association, vol. 62(5), pages 2061-2096, October.
    21. Tobias Adrian & Nina Boyarchenko, 2012. "Intermediary leverage cycles and financial stability," Staff Reports 567, Federal Reserve Bank of New York, revised 01 Feb 2015.
    22. Francis A. Longstaff & Jiang Wang, 2012. "Asset Pricing and the Credit Market," The Review of Financial Studies, Society for Financial Studies, vol. 25(11), pages 3169-3215.
    23. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    24. Martin Lettau & Sydney Ludvigson, 2001. "Resurrecting the (C)CAPM: A Cross-Sectional Test When Risk Premia Are Time-Varying," Journal of Political Economy, University of Chicago Press, vol. 109(6), pages 1238-1287, December.
    25. Tobias Adrian & Emanuel Moench & Hyun Song Shin, 2010. "Financial intermediation, asset prices, and macroeconomic dynamics," Staff Reports 422, Federal Reserve Bank of New York.
    26. Sentana, Enrique & Fiorentini, Gabriele, 2001. "Identification, estimation and testing of conditionally heteroskedastic factor models," Journal of Econometrics, Elsevier, vol. 102(2), pages 143-164, June.
    27. Nicolae Garleanu & Lasse Heje Pedersen & Allen M. Poteshman, 2009. "Demand-Based Option Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 22(10), pages 4259-4299, October.
    28. Jacob Boudoukh & Roni Michaely & Matthew Richardson & Michael R. Roberts, 2007. "On the Importance of Measuring Payout Yield: Implications for Empirical Asset Pricing," Journal of Finance, American Finance Association, vol. 62(2), pages 877-915, April.
    29. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    30. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    31. John H. Cochrane, 1999. "Portfolio advice of a multifactor world," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 59-78.
    32. Markus K. Brunnermeier & Yuliy Sannikov, 2014. "A Macroeconomic Model with a Financial Sector," American Economic Review, American Economic Association, vol. 104(2), pages 379-421, February.
    33. repec:hal:journl:peer-00741630 is not listed on IDEAS
    34. He, Zhiguo & Kelly, Bryan & Manela, Asaf, 2017. "Intermediary asset pricing: New evidence from many asset classes," Journal of Financial Economics, Elsevier, vol. 126(1), pages 1-35.
    35. David S. Bates, 2006. "Maximum Likelihood Estimation of Latent Affine Processes," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 909-965.
    36. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    37. repec:oup:rfinst:v:25:y::i:11:p:3169-3215 is not listed on IDEAS
    38. Andrea Buraschi & Alexei Jiltsov, 2006. "Model Uncertainty and Option Markets with Heterogeneous Beliefs," Journal of Finance, American Finance Association, vol. 61(6), pages 2841-2897, December.
    39. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    40. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    41. John Geanakoplos, 2009. "The Leverage Cycle," Cowles Foundation Discussion Papers 1715, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke-Li Xu & Junjie Guo, 2021. "A New Test for Multiple Predictive Regression," CAEPR Working Papers 2022-001 Classification-C, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    2. George M. Constantinides & Michal Czerwonko & Stylianos Perrakis, 2020. "Mispriced index option portfolios," Financial Management, Financial Management Association International, vol. 49(2), pages 297-330, June.
    3. Gruenthaler, Thomas & Lorenz, Friedrich & Meyerhof, Paul, 2022. "Option-based intermediary leverage," Journal of Banking & Finance, Elsevier, vol. 145(C).
    4. Libo Yin & Jing Nie & Liyan Han, 2021. "Intermediary capital risk and commodity futures volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 577-640, May.
    5. Valentin Haddad & Tyler Muir, 2021. "Do Intermediaries Matter for Aggregate Asset Prices?," Journal of Finance, American Finance Association, vol. 76(6), pages 2719-2761, December.
    6. Aramonte, Sirio & Szerszeń, Paweł J., 2020. "Cross-market liquidity and dealer profitability: Evidence from the bond and CDS markets," Journal of Financial Markets, Elsevier, vol. 51(C).
    7. Ko Adachi & Kazuhiro Hiraki & Tomiyuki Kitamura, 2021. "Supplementary Paper Series for the "Assessment" (1): The Effects of the Bank of Japan's ETF Purchases on Risk Premia in the Stock Markets," Bank of Japan Working Paper Series 21-E-3, Bank of Japan.
    8. Davide E Avino & Enrique Salvador, 2024. "Contingent Claims and Hedging of Credit Risk with Equity Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 14(2), pages 310-348.
    9. Gehricke, Sebastian A. & Zhang, Jin E., 2021. "Tracking performance of VIX futures ETPs," Journal of Empirical Finance, Elsevier, vol. 61(C), pages 103-117.
    10. Sonnan Chen & Yuchi Gu, 2021. "Joint estimation of volatility risk and tail risk premia with time-varying macro-state-dependent property," Review of Quantitative Finance and Accounting, Springer, vol. 56(4), pages 1357-1397, May.
    11. Ramachandran, Lakshmi Shankar & Tayal, Jitendra, 2021. "Mispricing, short-sale constraints, and the cross-section of option returns," Journal of Financial Economics, Elsevier, vol. 141(1), pages 297-321.
    12. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    13. Augustin, Patrick & Sokolovski, Valeri & Subrahmanyam, Marti G. & Tomio, Davide, 2022. "How sovereign is sovereign credit risk? Global prices, local quantities," Journal of Monetary Economics, Elsevier, vol. 131(C), pages 92-111.
    14. Deng, Zhijian & Yao, Yuhang, 2024. "Option pricing under market maker's inventory risk: A case study of China," Finance Research Letters, Elsevier, vol. 66(C).
    15. Feng, Xu & Lu, Lei & Xiao, Yajun, 2020. "Shadow banks, leverage risks, and asset prices," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Adrian & Richard K. Crump & Erik Vogt, 2019. "Nonlinearity and Flight‐to‐Safety in the Risk‐Return Trade‐Off for Stocks and Bonds," Journal of Finance, American Finance Association, vol. 74(4), pages 1931-1973, August.
    2. Kargar, Mahyar, 2021. "Heterogeneous intermediary asset pricing," Journal of Financial Economics, Elsevier, vol. 141(2), pages 505-532.
    3. He, Zhiguo & Kelly, Bryan & Manela, Asaf, 2017. "Intermediary asset pricing: New evidence from many asset classes," Journal of Financial Economics, Elsevier, vol. 126(1), pages 1-35.
    4. Bing Han & Gang Li, 2021. "Information Content of Aggregate Implied Volatility Spread," Management Science, INFORMS, vol. 67(2), pages 1249-1269, February.
    5. Tobias Adrian & Nellie Liang, 2018. "Monetary Policy, Financial Conditions, and Financial Stability," International Journal of Central Banking, International Journal of Central Banking, vol. 14(1), pages 73-131, January.
    6. Tobias Adrian & Emanuel Moench & Hyun Song Shin, 2013. "Dynamic Leverage Asset Pricing," Staff Reports 625, Federal Reserve Bank of New York.
    7. Alan Moreira & Alexi Savov, 2014. "The Macroeconomics of Shadow Banking," NBER Working Papers 20335, National Bureau of Economic Research, Inc.
    8. Philippe Mueller & Andrea Vedolin & Yu-min Yen, 2012. "Bond Variance Risk Premia," FMG Discussion Papers dp699, Financial Markets Group.
    9. Goldberg, Jonathan, 2020. "Liquidity supply by broker-dealers and real activity," Journal of Financial Economics, Elsevier, vol. 136(3), pages 806-827.
    10. Pyun, Sungjune, 2019. "Variance risk in aggregate stock returns and time-varying return predictability," Journal of Financial Economics, Elsevier, vol. 132(1), pages 150-174.
    11. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Taamouti, Abderrahim, 2019. "The information content of forward moments," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 527-541.
    12. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    13. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    14. Semyon Malamud & Andreas Schrimpf, 2016. "Intermediation Markups and Monetary Policy Passthrough," Swiss Finance Institute Research Paper Series 16-75, Swiss Finance Institute.
    15. Vadim Elenev & Tim Landvoigt & Stijn Van Nieuwerburgh, 2021. "A Macroeconomic Model With Financially Constrained Producers and Intermediaries," Econometrica, Econometric Society, vol. 89(3), pages 1361-1418, May.
    16. Tyler Muir, 2017. "Financial Crises and Risk Premia," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(2), pages 765-809.
    17. Petar Sabtchevsky & Paul Whelan & Andrea Vedolin & Philippe Mueller, 2017. "Variance Risk Premia on Stocks and Bonds," 2017 Meeting Papers 1161, Society for Economic Dynamics.
    18. Peter Van Tassel & Erik Vogt, 2016. "Global variance term premia and intermediary risk appetite," Staff Reports 789, Federal Reserve Bank of New York.
    19. Stefan Reitz & Dennis Umlandt, 2019. "Foreign Exchange Dealer Asset Pricing," Working Paper Series 2019-08, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    20. Yaw‐Huei Wang & Kuang‐Chieh Yen, 2019. "The information content of the implied volatility term structure on future returns," European Financial Management, European Financial Management Association, vol. 25(2), pages 380-406, March.

    More about this item

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G2 - Financial Economics - - Financial Institutions and Services

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:25573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.