IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/23232.html
   My bibliography  Save this paper

Poorly Measured Confounders are More Useful on the Left Than on the Right

Author

Listed:
  • Zhuan Pei
  • Jörn-Steffen Pischke
  • Hannes Schwandt

Abstract

Researchers frequently test identifying assumptions in regression based research designs (which include instrumental variables or difference-in-differences models) by adding additional control variables on the right hand side of the regression. If such additions do not affect the coefficient of interest (much) a study is presumed to be reliable. We caution that such invariance may result from the fact that the observed variables used in such robustness checks are often poor measures of the potential underlying confounders. In this case, a more powerful test of the identifying assumption is to put the variable on the left hand side of the candidate regression. We provide derivations for the estimators and test statistics involved, as well as power calculations, which can help applied researchers interpret their findings. We illustrate these results in the context of various strategies which have been suggested to identify the returns to schooling.

Suggested Citation

  • Zhuan Pei & Jörn-Steffen Pischke & Hannes Schwandt, 2017. "Poorly Measured Confounders are More Useful on the Left Than on the Right," NBER Working Papers 23232, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:23232
    Note: ED LS PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w23232.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anderson, Michael L, 2008. "Multiple Inference and Gender Differences in the Effects of Early Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt15n8j26f, Department of Agricultural & Resource Economics, UC Berkeley.
    2. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    3. Battistin, Erich & Chesher, Andrew, 2014. "Treatment effect estimation with covariate measurement error," Journal of Econometrics, Elsevier, vol. 178(2), pages 707-715.
    4. Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1350-1361, July.
    5. Jonah B. Gelbach, 2016. "When Do Covariates Matter? And Which Ones, and How Much?," Journal of Labor Economics, University of Chicago Press, vol. 34(2), pages 509-543.
    6. Henry S. Farber & Robert Gibbons, 1996. "Learning and Wage Dynamics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(4), pages 1007-1047.
    7. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    8. Nicola Persico & Andrew Postlewaite & Dan Silverman, 2004. "The Effect of Adolescent Experience on Labor Market Outcomes: The Case of Height," Journal of Political Economy, University of Chicago Press, vol. 112(5), pages 1019-1053, October.
    9. Anderson, Michael L., 2008. "Multiple Inference and Gender Differences in the Effects of Early Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1481-1495.
    10. J. A. Hausman & W. E. Taylor, 1980. "Comparing Specification Tests and Classical Tests," Working papers 266, Massachusetts Institute of Technology (MIT), Department of Economics.
    11. Joshua D. Angrist & Jörn-Steffen Pischke, 2015. "The path from cause to effect: mastering 'metrics," CentrePiece - The magazine for economic performance 442, Centre for Economic Performance, LSE.
    12. Miriam Bruhn & David McKenzie, 2009. "In Pursuit of Balance: Randomization in Practice in Development Field Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
    13. MacKinnon, James G, 1992. "Model Specification Tests and Artificial Regressions," Journal of Economic Literature, American Economic Association, vol. 30(1), pages 102-146, March.
    14. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    15. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    16. Griliches, Zvi, 1977. "Estimating the Returns to Schooling: Some Econometric Problems," Econometrica, Econometric Society, vol. 45(1), pages 1-22, January.
    17. Bound, John & Brown, Charles & Duncan, Greg J & Rodgers, Willard L, 1994. "Evidence on the Validity of Cross-Sectional and Longitudinal Labor Market Data," Journal of Labor Economics, University of Chicago Press, vol. 12(3), pages 345-368, July.
    18. Nicola Persico & Andrew Postlewaite & Dan Silverman, 2001. "The Effect of Adolescent Experience on Labor Market Outcomes: The Case of Height, Third Version," PIER Working Paper Archive 04-013, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 15 Mar 2004.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phadera, Lokendra, 2021. "Unfortunate Moms and Unfortunate Children: Impact of the Nepali Civil War on Women's Stature and Intergenerational Health," Journal of Health Economics, Elsevier, vol. 76(C).
    2. Ham, Andrés & Michelson, Hope C., 2018. "Does the form of delivering incentives in conditional cash transfers matter over a decade later?," Journal of Development Economics, Elsevier, vol. 134(C), pages 96-108.
    3. Ksoll, Christopher & Lilleør, Helene Bie & Lønborg, Jonas Helth & Rasmussen, Ole Dahl, 2016. "Impact of Village Savings and Loan Associations: Evidence from a cluster randomized trial," Journal of Development Economics, Elsevier, vol. 120(C), pages 70-85.
    4. Clarke, Damian & Cortés, Gustavo & Vergara, Diego, 2017. "Growing Together: Assessing Equity and Effciency in an Early-Life Health Program in Chile," Research Department working papers 1139, CAF Development Bank Of Latinamerica.
    5. Ernesto Dal Bó & Frederico Finan & Martín A. Rossi, 2013. "Strengthening State Capabilities: The Role of Financial Incentives in the Call to Public Service," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(3), pages 1169-1218.
    6. Page, Lionel & Sarkar, Dipanwita & Silva-Goncalves, Juliana, 2019. "Long-lasting effects of relative age at school," Journal of Economic Behavior & Organization, Elsevier, vol. 168(C), pages 166-195.
    7. Owen Ozier, 2018. "The Impact of Secondary Schooling in Kenya: A Regression Discontinuity Analysis," Journal of Human Resources, University of Wisconsin Press, vol. 53(1), pages 157-188.
    8. Zölitz, Ulf & Sorrenti, Giuseppe & Ribeaud, Denis & Eisner, Manuel, 2020. "The Causal Impact of Socio-Emotional Skills Training on Educational Success," CEPR Discussion Papers 14523, C.E.P.R. Discussion Papers.
    9. Jeffrey D. Michler & Anna Josephson, 2022. "Recent developments in inference: practicalities for applied economics," Chapters, in: A Modern Guide to Food Economics, chapter 11, pages 235-268, Edward Elgar Publishing.
    10. Damian Clarke & Gustavo Cortés Méndez & Diego Vergara Sepúlveda, 2020. "Growing together: assessing equity and efficiency in a prenatal health program," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(3), pages 883-956, July.
    11. Carpena, Fenella & Zia, Bilal, 2020. "The causal mechanism of financial education: Evidence from mediation analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 143-184.
    12. Yakovlev, Pavel & Leguizamon, Susane, 2012. "Ignorance is not bliss: On the role of education in subjective well-being," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 41(6), pages 806-815.
    13. So Yoon Ahn & Youjin Hahn & Semee Yoon, 2021. "Can New Learning Opportunities Reshape Gender Attitudes for Girls?: Field Evidence from Tanzania," Working Papers 2021-046, Human Capital and Economic Opportunity Working Group.
    14. Li, Li & Xiao, Yun, 2023. "Beyond boiling: The effect of in utero exposure to treated tap water on childhood health," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    15. Sonja C. Kassenboehmer & Stefanie Schurer, 2018. "Survey item-response behavior as an imperfect proxy for unobserved ability: Theory and application," Working Papers 2018-035, Human Capital and Economic Opportunity Working Group.
    16. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    17. Emilio Depetris-Chauvin & Ömer Özak, 2020. "The origins of the division of labor in pre-industrial times," Journal of Economic Growth, Springer, vol. 25(3), pages 297-340, September.
    18. Michael Baker & Kevin Milligan, 2016. "Boy-Girl Differences in Parental Time Investments: Evidence from Three Countries," Journal of Human Capital, University of Chicago Press, vol. 10(4), pages 399-441.
    19. Magnan, Nicholas & Hoffmann, Vivian & Opoku, Nelson & Gajate Garrido, Gissele & Kanyam, Daniel Akwasi, 2021. "Information, technology, and market rewards: Incentivizing aflatoxin control in Ghana," Journal of Development Economics, Elsevier, vol. 151(C).
    20. Gabriella Conti & Mark Hanson & Hazel Inskip & Sarah Crozier & Cyrus Cooper & Keith Godfrey, 2018. "Beyond Birth Weight: The Origins of Human Capital," Working Papers 2018-089, Human Capital and Economic Opportunity Working Group.

    More about this item

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:23232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.