IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/22252.html
   My bibliography  Save this paper

The Race Between Machine and Man: Implications of Technology for Growth, Factor Shares and Employment

Author

Listed:
  • Daron Acemoglu
  • Pascual Restrepo

Abstract

We examine the concerns that new technologies will render labor redundant in a framework in which tasks previously performed by labor can be automated and new versions of existing tasks, in which labor has a comparative advantage, can be created. In a static version where capital is fixed and technology is exogenous, automation reduces employment and the labor share, and may even reduce wages, while the creation of new tasks has the opposite effects. Our full model endogenizes capital accumulation and the direction of research towards automation and the creation of new tasks. If the long-run rental rate of capital relative to the wage is sufficiently low, the long-run equilibrium involves automation of all tasks. Otherwise, there exists a stable balanced growth path in which the two types of innovations go hand-in-hand. Stability is a consequence of the fact that automation reduces the cost of producing using labor, and thus discourages further automation and encourages the creation of new tasks. In an extension with heterogeneous skills, we show that inequality increases during transitions driven both by faster automation and introduction of new tasks, and characterize the conditions under which inequality is increasing or stable in the long run.

Suggested Citation

  • Daron Acemoglu & Pascual Restrepo, 2016. "The Race Between Machine and Man: Implications of Technology for Growth, Factor Shares and Employment," NBER Working Papers 22252, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:22252
    Note: EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w22252.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph Zeira, 1998. "Workers, Machines, and Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1091-1117.
    2. Paul Beaudry & David A. Green & Benjamin M. Sand, 2016. "The Great Reversal in the Demand for Skill and Cognitive Tasks," Journal of Labor Economics, University of Chicago Press, vol. 34(S1), pages 199-247.
    3. Greenwood, Jeremy & Yorukoglu, Mehmet, 1997. "1974," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 46(1), pages 49-95, June.
      • Greenwood, J. & Yorukoglu, M., 1996. "1974," RCER Working Papers 429, University of Rochester - Center for Economic Research (RCER).
    4. Gene M. Grossman & Elhanan Helpman & Ezra Oberfield & Thomas Sampson, 2017. "Balanced Growth Despite Uzawa," American Economic Review, American Economic Association, vol. 107(4), pages 1293-1312, April.
    5. Oded Galor & Omer Moav, 2000. "Ability-Biased Technological Transition, Wage Inequality, and Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(2), pages 469-497.
    6. Acemoglu, Daron & Gancia, Gino & Zilibotti, Fabrizio, 2012. "Competing engines of growth: Innovation and standardization," Journal of Economic Theory, Elsevier, vol. 147(2), pages 570-601.3.
    7. Ezra Oberfield & Devesh Raval, 2021. "Micro Data and Macro Technology," Econometrica, Econometric Society, vol. 89(2), pages 703-732, March.
    8. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders in the Theory of Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(1), pages 43-61.
    9. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    10. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    11. Gene M. Grossman & Esteban Rossi-Hansberg, 2008. "Trading Tasks: A Simple Theory of Offshoring," American Economic Review, American Economic Association, vol. 98(5), pages 1978-1997, December.
    12. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    13. Arnaud Costinot & Jonathan Vogel, 2010. "Matching and Inequality in the World Economy," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 747-786, August.
    14. Christopher L. Foote & Richard W. Ryan, 2015. "Labor-Market Polarization over the Business Cycle," NBER Macroeconomics Annual, University of Chicago Press, vol. 29(1), pages 371-413.
    15. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    16. Daron Acemoglu & Gino Gancia & Fabrizio Zilibotti, 2015. "Offshoring and Directed Technical Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(3), pages 84-122, July.
    17. Daron Acemoglu, 2010. "When Does Labor Scarcity Encourage Innovation?," Journal of Political Economy, University of Chicago Press, vol. 118(6), pages 1037-1078.
    18. Andrés Rodríguez-Clare, 2010. "Offshoring in a Ricardian World," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(2), pages 227-258, April.
    19. Mathias Thoenig & Thierry Verdier, 2003. "A Theory of Defensive Skill-Biased Innovation and Globalization," American Economic Review, American Economic Association, vol. 93(3), pages 709-728, June.
    20. Charles I. Jones, 2005. "The Shape of Production Functions and the Direction of Technical Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(2), pages 517-549.
    21. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    22. Daron Acemoglu, 2003. "Labor- And Capital-Augmenting Technical Change," Journal of the European Economic Association, MIT Press, vol. 1(1), pages 1-37, March.
    23. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    24. Francesco Caselli & Wilbur John Coleman II, 2006. "The World Technology Frontier," American Economic Review, American Economic Association, vol. 96(3), pages 499-522, June.
    25. Zeira, Joseph, 2005. "Machines as Engines of Growth," CEPR Discussion Papers 5429, C.E.P.R. Discussion Papers.
    26. Jeffrey Lin, 2011. "Technological Adaptation, Cities, and New Work," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 554-574, May.
    27. Daron Acemoglu, 2007. "Equilibrium Bias of Technology," Econometrica, Econometric Society, vol. 75(5), pages 1371-1409, September.
    28. Jeffrey D. Sachs & Laurence J. Kotlikoff, 2012. "Smart Machines and Long-Term Misery," NBER Working Papers 18629, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hémous & Morten Olsen, 2022. "The Rise of the Machines: Automation, Horizontal Innovation, and Income Inequality," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(1), pages 179-223, January.
    2. Gregory Casey, 2018. "Technology-Driven Unemployment," 2018 Meeting Papers 302, Society for Economic Dynamics.
    3. Daron Acemoglu & Gino Gancia & Fabrizio Zilibotti, 2015. "Offshoring and Directed Technical Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(3), pages 84-122, July.
    4. T. Gries & R. Grundmann & I. Palnau & M. Redlin, 2017. "Innovations, growth and participation in advanced economies - a review of major concepts and findings," International Economics and Economic Policy, Springer, vol. 14(2), pages 293-351, April.
    5. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.
    6. Yuki, Kazuhiro, 2012. "Mechanization, task assignment, and inequality," MPRA Paper 37754, University Library of Munich, Germany.
    7. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    8. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    9. Gino Gancia, 2012. "Globalization, technology and inequality," Economics Working Papers 1363, Department of Economics and Business, Universitat Pompeu Fabra, revised Nov 2012.
    10. Daron Acemoglu & Pascual Restrepo, 2018. "Low-Skill and High-Skill Automation," Journal of Human Capital, University of Chicago Press, vol. 12(2), pages 204-232.
    11. Muendler, Marc-Andreas, 2017. "Trade, technology, and prosperity: An account of evidence from a labor-market perspective," WTO Staff Working Papers ERSD-2017-15, World Trade Organization (WTO), Economic Research and Statistics Division.
    12. Antonio Accetturo & Alberto Dalmazzo & Guido Blasio, 2014. "Skill Polarization In Local Labor Markets Under Share-Altering Technical Change," Journal of Regional Science, Wiley Blackwell, vol. 54(2), pages 249-272, March.
    13. David Hémous & Morten Olsen, 2021. "Directed Technical Change in Labor and Environmental Economics," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 571-597, August.
    14. Florian Brugger & Christian Gehrke, 2017. "The Neoclassical Approach to Induced Technical Change: From Hicks to Acemoglu," Metroeconomica, Wiley Blackwell, vol. 68(4), pages 730-776, November.
    15. Loebbing, Jonas, 2018. "An Elementary Theory of Endogenous Technical Change and Wage Inequality," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181603, Verein für Socialpolitik / German Economic Association.
    16. Jerzmanowski, Michal & Tamura, Robert, 2019. "Directed technological change & cross-country income differences: A quantitative analysis," Journal of Development Economics, Elsevier, vol. 141(C).
    17. David J. Deming, 2017. "The Growing Importance of Social Skills in the Labor Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1593-1640.
    18. Pi, Jiancai & Zhang, Pengqing, 2018. "Skill-biased technological change and wage inequality in developing countries," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 347-362.
    19. Consoli, Davide & Marin, Giovanni & Rentocchini, Francesco & Vona, Francesco, 2023. "Routinization, within-occupation task changes and long-run employment dynamics," Research Policy, Elsevier, vol. 52(1).
    20. Wenchao Jin, 2022. "Occupational polarisation and endogenous task-biased technical change," Working Paper Series 0622, Department of Economics, University of Sussex Business School.

    More about this item

    JEL classification:

    • J23 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Demand
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:22252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.