IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/21291.html
   My bibliography  Save this paper

Environmental Benefits from Driving Electric Vehicles?

Author

Listed:
  • Stephen P. Holland
  • Erin T. Mansur
  • Nicholas Z. Muller
  • Andrew J. Yates

Abstract

Electric vehicles offer the promise of reduced environmental externalities relative to their gasoline counterparts. We combine a theoretical discrete-choice model of new vehicle purchases, an econometric analysis of the marginal emissions from electricity, and the AP2 air pollution model to estimate the environmental benefit of electric vehicles. First, we find considerable variation in the environmental benefit, implying a range of second-best electric vehicle purchase subsidies from $3025 in California to -$4773 in North Dakota, with a mean of -$742. Second, over ninety percent of local environmental externalities from driving an electric vehicle in one state are exported to others, implying that electric vehicles may be subsidized locally, even though they may lead to negative environmental benefits overall. Third, geographically differentiated subsidies can reduce deadweight loss, but only modestly. Fourth, the current federal purchase subsidy of $7500 has greater deadweight loss than a no-subsidy policy.

Suggested Citation

  • Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2015. "Environmental Benefits from Driving Electric Vehicles?," NBER Working Papers 21291, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:21291
    Note: EEE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w21291.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    2. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    3. Small, Kenneth A & Rosen, Harvey S, 1981. "Applied Welfare Economics with Discrete Choice Models," Econometrica, Econometric Society, vol. 49(1), pages 105-130, January.
    4. De Borger, Bruno, 2001. "Discrete choice models and optimal two-part tariffs in the presence of externalities: optimal taxation of cars," Regional Science and Urban Economics, Elsevier, vol. 31(4), pages 471-504, July.
    5. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    6. Ian W. H. Parry & Kenneth A. Small, 2005. "Does Britain or the United States Have the Right Gasoline Tax?," American Economic Review, American Economic Association, vol. 95(4), pages 1276-1289, September.
    7. Banzhaf, H. Spencer & Chupp, B. Andrew, 2012. "Fiscal federalism and interjurisdictional externalities: New results and an application to US Air pollution," Journal of Public Economics, Elsevier, vol. 96(5), pages 449-464.
    8. Mendelsohn, Robert, 1980. "An economic analysis of air pollution from coal-fired power plants," Journal of Environmental Economics and Management, Elsevier, vol. 7(1), pages 30-43, March.
    9. De Borger, Bruno & Mayeres, Inge, 2007. "Optimal taxation of car ownership, car use and public transport: Insights derived from a discrete choice numerical optimization model," European Economic Review, Elsevier, vol. 51(5), pages 1177-1204, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Severin Borenstein & Lucas W. Davis, 2016. "The Distributional Effects of US Clean Energy Tax Credits," Tax Policy and the Economy, University of Chicago Press, vol. 30(1), pages 191-234.
    2. Ian Irvine, 2017. "The Marginal Social Value of Electric Vehicle Subsidies - Preliminary Evidence," Economics Bulletin, AccessEcon, vol. 37(1), pages 137-148.
    3. Muller, Nicholas Z., 2019. "The derivation of discount rates with an augmented measure of income," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 87-101.
    4. J. R. DeShazo, 2016. "Improving Incentives for Clean Vehicle Purchases in the United States: Challenges and Opportunities," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 149-165.
    5. Lucas W. Davis & Christopher R. Knittel, 2019. "Are Fuel Economy Standards Regressive?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 37-63.
    6. Lucas W. Davis, 2017. "The Environmental Cost of Global Fuel Subsidies," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    7. Sheldon, Tamara L. & DeShazo, J.R., 2017. "How does the presence of HOV lanes affect plug-in electric vehicle adoption in California? A generalized propensity score approach," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 146-170.
    8. Sekar, Ashok & Williams, Eric & Hittinger, Eric & Chen, Roger, 2019. "How behavioral and geographic heterogeneity affects economic and environmental benefits of efficient appliances," Energy Policy, Elsevier, vol. 125(C), pages 537-547.
    9. DeShazo, J.R. & Sheldon, Tamara L. & Carson, Richard T., 2017. "Designing policy incentives for cleaner technologies: Lessons from California's plug-in electric vehicle rebate program," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 18-43.
    10. Geoffrey Heal, 2017. "The Economics of the Climate," Journal of Economic Literature, American Economic Association, vol. 55(3), pages 1046-1063, September.
    11. Rhodes, Joshua D. & King, Carey & Gulen, Gürcan & Olmstead, Sheila M. & Dyer, James S. & Hebner, Robert E. & Beach, Fred C. & Edgar, Thomas F. & Webber, Michael E., 2017. "A geographically resolved method to estimate levelized power plant costs with environmental externalities," Energy Policy, Elsevier, vol. 102(C), pages 491-499.
    12. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    13. Priessner, Alfons & Hampl, Nina, 2020. "Can product bundling increase the joint adoption of electric vehicles, solar panels and battery storage? Explorative evidence from a choice-based conjoint study in Austria," Ecological Economics, Elsevier, vol. 167(C).
    14. Archsmith, James & Kendall, Alissa & Rapson, David, 2015. "From Cradle to Junkyard: Assessing the Life Cycle Greenhouse Gas Benefits of Electric Vehicles," Research in Transportation Economics, Elsevier, vol. 52(C), pages 72-90.
    15. Mohamed, Moataz & Higgins, Christopher D. & Ferguson, Mark & Réquia, Weeberb J., 2018. "The influence of vehicle body type in shaping behavioural intention to acquire electric vehicles: A multi-group structural equation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 54-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    2. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2019. "Distributional Effects of Air Pollution from Electric Vehicle Adoption," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 65-94.
    3. Batarce, Marco & Ivaldi, Marc, 2014. "Urban travel demand model with endogenous congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 331-345.
    4. Lucas W. Davis & James M. Sallee, 2020. "Should Electric Vehicle Drivers Pay a Mileage Tax?," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 1(1), pages 65-94.
    5. Tscharaktschiew, Stefan, 2014. "Shedding light on the appropriateness of the (high) gasoline tax level in Germany," Economics of Transportation, Elsevier, vol. 3(3), pages 189-210.
    6. Tatsuhito Kono & Yohei Mitsuhiro & Jun Yoshida, 2021. "Simultaneous optimization of multiple taxes on car use and tolls considering the marginal cost of public funds in Japan," The Japanese Economic Review, Springer, vol. 72(2), pages 261-297, April.
    7. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    8. Bénédicte Meurisse, 2015. "On the relevance of differentiated car purchase taxes in light of the rebound effect," Working Papers 1512, Chaire Economie du climat.
    9. Don Fullerton & Li Gan & Miwa Hattori, 2015. "A model to evaluate vehicle emission incentive policies in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 79-108, January.
    10. Nicholas Economides & Katja Seim & V. Brian Viard, 2008. "Quantifying the benefits of entry into local phone service," RAND Journal of Economics, RAND Corporation, vol. 39(3), pages 699-730, September.
    11. Banzhaf, H. Spencer & Kasim, M. Taha, 2019. "Fuel consumption and gasoline prices: The role of assortative matching between households and automobiles," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 1-25.
    12. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
    13. Sofia Berto Villas‐Boas, 2009. "An empirical investigation of the welfare effects of banning wholesale price discrimination," RAND Journal of Economics, RAND Corporation, vol. 40(1), pages 20-46, March.
    14. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    15. Lawrence Goulder, 2007. "Distributional and Efficiency Impacts of Increased U.S. Gasoline Taxes," Discussion Papers 07-009, Stanford Institute for Economic Policy Research.
    16. Takahiko Kiso, 2019. "Evaluating New Policy Instruments of the Corporate Average Fuel Economy Standards: Footprint, Credit Transferring, and Credit Trading," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 445-476, February.
    17. Kidokoro, Yukihiro, 2016. "A micro foundation for discrete choice models with multiple categories of goods," Journal of choice modelling, Elsevier, vol. 19(C), pages 54-72.
    18. Martin Adler & Stefanie Peer & Tanja Sinozic, 2019. "Autonomous, Connected, Electric Shared vehicles (ACES) and public finance: an explorative analysis," Tinbergen Institute Discussion Papers 19-005/VIII, Tinbergen Institute.
    19. Mora Rodriguez, Jhon James, 2013. "Introduccion a la teoría del consumidor [Introduction to Consumer Theory]," MPRA Paper 48129, University Library of Munich, Germany, revised 08 Jul 2013.
    20. Hörcher, Daniel & Graham, Daniel J., 2020. "MaaS economics: Should we fight car ownership with subscriptions to alternative modes?," Economics of Transportation, Elsevier, vol. 22(C).

    More about this item

    JEL classification:

    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:21291. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.