IDEAS home Printed from
   My bibliography  Save this paper

Information Aggregation in a DSGE Model


  • Tarek A. Hassan
  • Thomas M. Mertens


We introduce the information microstructure of a canonical noisy rational expectations model (Hellwig, 1980) into the framework of a conventional real business cycle model. Each household receives a private signal about future productivity. In equilibrium, the stock price serves to aggregate and transmit this information. We find that dispersed information about future productivity affects the quantitative properties of our real business cycle model in three dimensions. First, households' ability to learn about the future affects their consumption-savings decision. The equity premium falls and the risk-free interest rate rises when the stock price perfectly reveals innovations to future productivity. Second, when noise trader demand shocks limit the stock market's capacity to aggregate information, households hold heterogeneous expectations in equilibrium. However, for a reasonable size of noise trader demand shocks the model cannot generate the kind of disagreement observed in the data. Third, even moderate heterogeneity in the equilibrium expectations held by households has a sizable effect on the level of all economic aggregates and on the correlations and standard deviations produced by the model. For example, the correlation between consumption and investment growth is 0.29 when households have no information about the future, but 0.41 when information is dispersed.

Suggested Citation

  • Tarek A. Hassan & Thomas M. Mertens, 2014. "Information Aggregation in a DSGE Model," NBER Working Papers 20193, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:20193
    Note: AP CF ME TWP

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Stephanie Schmitt‐Grohé & Martín Uribe, 2012. "What's News in Business Cycles," Econometrica, Econometric Society, vol. 80(6), pages 2733-2764, November.
    2. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, January.
    3. Olivier J. Blanchard & Jean-Paul L'Huillier & Guido Lorenzoni, 2013. "News, Noise, and Fluctuations: An Empirical Exploration," American Economic Review, American Economic Association, vol. 103(7), pages 3045-3070, December.
    4. Goldstein, Itay & Ozdenoren, Emre & Yuan, Kathy, 2013. "Trading frenzies and their impact on real investment," Journal of Financial Economics, Elsevier, vol. 109(2), pages 566-582.
    5. Barsky, Robert B. & Sims, Eric R., 2011. "News shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 58(3), pages 273-289.
    6. Ravi Bansal & Amir Yaron, 2004. "Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles," Journal of Finance, American Finance Association, vol. 59(4), pages 1481-1509, August.
    7. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393 Elsevier.
    8. Hellwig, Martin F., 1980. "On the aggregation of information in competitive markets," Journal of Economic Theory, Elsevier, vol. 22(3), pages 477-498, June.
    9. Tarek A. Hassan & Thomas M. Mertens, 2017. "The Social Cost of Near-Rational Investment," American Economic Review, American Economic Association, vol. 107(4), pages 1059-1103, April.
    10. Philippe Bacchetta & Eric Van Wincoop, 2008. "Higher Order Expectations in Asset Pricing," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(5), pages 837-866, August.
    11. Bernanke, Ben & Gertler, Mark, 1989. "Agency Costs, Net Worth, and Business Fluctuations," American Economic Review, American Economic Association, vol. 79(1), pages 14-31, March.
    12. Vasco Curdia & Michael Woodford, 2010. "Credit Spreads and Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(s1), pages 3-35, September.
    13. Jermann, Urban J., 1998. "Asset pricing in production economies," Journal of Monetary Economics, Elsevier, vol. 41(2), pages 257-275, April.
    14. Elias Albagli & Christian Hellwig & Aleh Tsyvinski, 2011. "A Theory of Asset Pricing Based on Heterogeneous Information," NBER Working Papers 17548, National Bureau of Economic Research, Inc.
    15. Nir Jaimovich & Sergio Rebelo, 2009. "Can News about the Future Drive the Business Cycle?," American Economic Review, American Economic Association, vol. 99(4), pages 1097-1118, September.
    16. TallariniJr., Thomas D., 2000. "Risk-sensitive real business cycles," Journal of Monetary Economics, Elsevier, vol. 45(3), pages 507-532, June.
    17. Grossman, Sanford J, 1976. "On the Efficiency of Competitive Stock Markets Where Trades Have Diverse Information," Journal of Finance, American Finance Association, vol. 31(2), pages 573-585, May.
    18. Verrecchia, Robert E, 1982. "Information Acquisition in a Noisy Rational Expectations Economy," Econometrica, Econometric Society, vol. 50(6), pages 1415-1430, November.
    19. Amador, Manuel & Weill, Pierre-Olivier, 2012. "Learning from private and public observations of othersʼ actions," Journal of Economic Theory, Elsevier, vol. 147(3), pages 910-940.
    20. Epstein, Larry G & Zin, Stanley E, 1989. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework," Econometrica, Econometric Society, vol. 57(4), pages 937-969, July.
    21. Sy-Ming Guu & Kenneth L. Judd, 2001. "Asymptotic methods for asset market equilibrium analysis," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 18(1), pages 127-157.
    22. Schmitt-Grohé, Stephanie & Uribe, Martín, 2012. "What's News in Business Cycles," CEPR Discussion Papers 8984, C.E.P.R. Discussion Papers.
    23. Michael B. Devereux & Alan Sutherland, 2011. "Country Portfolios In Open Economy Macro‐Models," Journal of the European Economic Association, European Economic Association, vol. 9(2), pages 337-369, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E2 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:20193. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.