IDEAS home Printed from https://ideas.repec.org/p/mos/moswps/2014-45.html
   My bibliography  Save this paper

The Value of Heterogeneous Property Rights and the Costs of Water Volatility

Author

Listed:
  • Daniel A. Brent

Abstract

The system of prior appropriation in the Western Unites States prioritizes property rights for water based on the establishment of beneficial use, creating a hierarchy where rights initiated first are more secure. I estimate the demand for security in water rights through their capitalization in agricultural property markets using spatially explicit water rights data in the Yakima River Basin, a major watershed in Washington State. The Yakima River watershed, like many Western watersheds, satisfies all water claims during an average year so the benefits of secure water rights stem from protection against water curtailment during drought years. Thus the relative value of secure property rights is a function of water supply volatility because the costs of droughts are predominantly born by those with weak rights. Bayesian model averaging and boundary discontinuity specifications of the hedonic price model indicate that the premium for more secure water rights is not statistically different from zero.

Suggested Citation

  • Daniel A. Brent, 2014. "The Value of Heterogeneous Property Rights and the Costs of Water Volatility," Monash Economics Working Papers 45-14, Monash University, Department of Economics.
  • Handle: RePEc:mos:moswps:2014-45
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/eco/research/papers/2014/4514valuebrent.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ragan A. Petrie & Laura O. Taylor, 2007. "Estimating the Value of Water Use Permits: A Hedonic Approach Applied to Farmland in the Southeastern United States," Land Economics, University of Wisconsin Press, vol. 83(3), pages 302-318.
    2. Sandra E. Black, 1999. "Do Better Schools Matter? Parental Valuation of Elementary Education," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 577-599.
    3. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    4. Tsur, Yacov & Graham-Tomasi, Theodore, 1991. "The buffer value of groundwater with stochastic surface water supplies," Journal of Environmental Economics and Management, Elsevier, vol. 21(3), pages 201-224, November.
    5. Schlenker, Wolfram & Hanemann, W Michael & Fisher, Anthony C, 2007. "Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8q8309qn, Department of Agricultural & Resource Economics, UC Berkeley.
    6. Gary D. Libecap, 2011. "Institutional Path Dependence in Climate Adaptation: Coman's "Some Unsettled Problems of Irrigation"," American Economic Review, American Economic Association, vol. 101(1), pages 64-80, February.
    7. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    8. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt65s781bh, Department of Agricultural & Resource Economics, UC Berkeley.
    9. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    10. John Faux & Gregory M. Perry, 1999. "Estimating Irrigation Water Value Using Hedonic Price Analysis: A Case Study in Malheur County, Oregon," Land Economics, University of Wisconsin Press, vol. 75(3), pages 440-452.
    11. Jan P. Crouter, 1987. "Hedonic Estimation Applied to a Water Rights Market," Land Economics, University of Wisconsin Press, vol. 63(3), pages 259-271.
    12. Raymond B. Palmquist, 1989. "Land as a Differentiated Factor of Production: A Hedonic Model and Its Implications for Welfare Measurement," Land Economics, University of Wisconsin Press, vol. 65(1), pages 23-28.
    13. S. V. Ciriacy-Wantrup, 1956. "Concepts Used as Economic Criteria for a System of Water Rights," Land Economics, University of Wisconsin Press, vol. 32(4), pages 295-312.
    14. Rosen, Sherwin, 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition," Journal of Political Economy, University of Chicago Press, vol. 82(1), pages 34-55, Jan.-Feb..
    15. Oscar R. Burt, 1964. "Optimal Resource Use Over Time with an Application to Ground Water," Management Science, INFORMS, vol. 11(1), pages 80-93, September.
    16. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    17. Markus Goldstein & Christopher Udry, 2008. "The Profits of Power: Land Rights and Agricultural Investment in Ghana," Journal of Political Economy, University of Chicago Press, vol. 116(6), pages 981-1022, December.
    18. Steven Buck & Maximilian Auffhammer & David Sunding, 2014. "Land Markets and the Value of Water: Hedonic Analysis Using Repeat Sales of Farmland," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(4), pages 953-969.
    19. Burness, H Stuart & Quirk, James P, 1979. "Appropriative Water Rights and the Efficient Allocation of Resources," American Economic Review, American Economic Association, vol. 69(1), pages 25-37, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brent, Daniel A., 2013. "The Value of Heterogeneous Property Rights: The Costs of Water Volatility," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149698, Agricultural and Applied Economics Association.
    2. Sampson, Gabriel S. & Hendricks, Nathan P. & Taylor, Mykel R., 2019. "Land market valuation of groundwater," Resource and Energy Economics, Elsevier, vol. 58(C).
    3. Mukherjee, Monobina & Schwabe, Kurt A., 2014. "Where's the salt? A spatial hedonic analysis of the value of groundwater to irrigated agriculture," Agricultural Water Management, Elsevier, vol. 145(C), pages 110-122.
    4. Mukherjee, Monobina & Schwabe, Kurt A., 2012. "Valuing Access To Multiple Water Supply Sources In Irrigated Agriculture With A Hedonic Pricing Model," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124604, Agricultural and Applied Economics Association.
    5. Sampson, Gabriel & Hendricks, Nathan P. & Taylor, Mykel R., 2018. "Land Market Valuation of Groundwater Availability," 2018 Annual Meeting, August 5-7, Washington, D.C. 274320, Agricultural and Applied Economics Association.
    6. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    7. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    8. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    9. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    10. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    11. Xinde Ji & Kelly M. Cobourn, 2021. "Weather Fluctuations, Expectation Formation, and Short-Run Behavioral Responses to Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 77-119, January.
    12. Mérel, Pierre & Paroissien, Emmanuel & Gammans, Matthew, 2024. "Sufficient statistics for climate change counterfactuals," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    13. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    14. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    15. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    16. Robert G. Chambers & Simone Pieralli, 2020. "The Sources of Measured US Agricultural Productivity Growth: Weather, Technological Change, and Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1198-1226, August.
    17. Liu, Ziheng & Lu, Qinan, 2023. "Ozone stress and crop harvesting failure: Evidence from US food production," Food Policy, Elsevier, vol. 121(C).
    18. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
    19. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    20. Eric C. Edwards & Nathan P. Hendricks & Gabriel S. Sampson, 2025. "The capitalization of property rights to groundwater," American Journal of Agricultural Economics, John Wiley & Sons, vol. 107(2), pages 390-410, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mos:moswps:2014-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Simon Angus (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.