IDEAS home Printed from https://ideas.repec.org/p/ags/aaea12/124604.html
   My bibliography  Save this paper

Valuing Access To Multiple Water Supply Sources In Irrigated Agriculture With A Hedonic Pricing Model

Author

Listed:
  • Mukherjee, Monobina
  • Schwabe, Kurt A.

Abstract

Increasing aridity, more frequent and intense drought, and greater degrees of water scarcity create unique challenges for agriculture. In response to these challenges, which often manifest themselves in the form of lower and more variable surface water supplies as well as depleted and degraded ground water supplies, growers are apt to seek out opportunities to adapt. One option confronting growers to reduce their exposure to water scarcity and heightened uncertainty is to diversify. Indeed, having access to a portfolio of supplies is one way in which water and irrigation districts as well as individual growers are responding to the changing landscape of water resource availability. The objective of this paper is to evaluate the benefits to irrigated agriculture from having access to multiple water supply sources, i.e., a water portfolio. With farm-level information on approximately 2000 agricultural parcels across California, we use the hedonic property value method to investigate the extent growers’ benefit from having access to multiple sources of water (i.e., a water portfolio). Our results suggest that while lower quality waters, less reliable water, and less water all negatively impact agricultural land values, holding a water portfolio has a positive impact on land values through its role in mitigating the negative aspects of these factors and reducing the sensitivity of agriculture to climate-related factors. From a policy perspective, such results identify a valuable adaptation tool that water and irrigation districts may consider to help offset the negative impacts of climate change, drought, and population increases on water supply availability and reliability.

Suggested Citation

  • Mukherjee, Monobina & Schwabe, Kurt A., 2012. "Valuing Access To Multiple Water Supply Sources In Irrigated Agriculture With A Hedonic Pricing Model," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124604, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea12:124604
    DOI: 10.22004/ag.econ.124604
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/124604/files/Mukherjee_Schwabe_AAEA_2012_Annual%20Meeting.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.124604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ragan A. Petrie & Laura O. Taylor, 2007. "Estimating the Value of Water Use Permits: A Hedonic Approach Applied to Farmland in the Southeastern United States," Land Economics, University of Wisconsin Press, vol. 83(3), pages 302-318.
    2. Connor, Jeffery D. & Schwabe, Kurt & King, Darran & Knapp, Keith, 2012. "Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation," Ecological Economics, Elsevier, vol. 77(C), pages 149-157.
    3. Raymond B. Palmquist, 1989. "Land as a Differentiated Factor of Production: A Hedonic Model and Its Implications for Welfare Measurement," Land Economics, University of Wisconsin Press, vol. 65(1), pages 23-28.
    4. Jeff Connor & Kurt Schwabe & Darran King & David Kaczan & Mac Kirby, 2009. "Impacts of climate change on lower Murray irrigation ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 437-456, July.
    5. Schlenker, Wolfram & Hanemann, W Michael & Fisher, Anthony C, 2007. "Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8q8309qn, Department of Agricultural & Resource Economics, UC Berkeley.
    6. Rosen, Sherwin, 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition," Journal of Political Economy, University of Chicago Press, vol. 82(1), pages 34-55, Jan.-Feb..
    7. Richard Hornbeck & Pinar Keskin, 2011. "The Evolving Impact of the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Climate," NBER Working Papers 17625, National Bureau of Economic Research, Inc.
    8. L. M. Hartman & R. L. Anderson, 1962. "Estimating the Value of Irrigation Water from Farm Sales Data in Northeastern Colorado," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 44(1), pages 207-213.
    9. Myrick Freeman, A. III, 1974. "On estimating air pollution control benefits from land value studies," Journal of Environmental Economics and Management, Elsevier, vol. 1(1), pages 74-83, May.
    10. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    11. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    12. Javier Calatrava & Alberto Garrido, 2005. "Spot water markets and risk in water supply," Agricultural Economics, International Association of Agricultural Economists, vol. 33(2), pages 131-143, September.
    13. Kurt A. Schwabe & Iddo Kan & Keith C. Knapp, 2006. "Drainwater Management for Salinity Mitigation in Irrigated Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 133-149.
    14. Jesper Stage & Rick Williams, 2003. "Implicit water pricing in Namibian farmland markets," Development Southern Africa, Taylor & Francis Journals, vol. 20(5), pages 633-645.
    15. John Faux & Gregory M. Perry, 1999. "Estimating Irrigation Water Value Using Hedonic Price Analysis: A Case Study in Malheur County, Oregon," Land Economics, University of Wisconsin Press, vol. 75(3), pages 440-452.
    16. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukherjee, Monobina & Schwabe, Kurt A., 2014. "Where's the salt? A spatial hedonic analysis of the value of groundwater to irrigated agriculture," Agricultural Water Management, Elsevier, vol. 145(C), pages 110-122.
    2. Daniel A. Brent, 2014. "The Value of Heterogeneous Property Rights and the Costs of Water Volatility," Monash Economics Working Papers 45-14, Monash University, Department of Economics.
    3. Brent, Daniel A., 2013. "The Value of Heterogeneous Property Rights: The Costs of Water Volatility," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149698, Agricultural and Applied Economics Association.
    4. Sampson, Gabriel S. & Hendricks, Nathan P. & Taylor, Mykel R., 2019. "Land market valuation of groundwater," Resource and Energy Economics, Elsevier, vol. 58(C).
    5. Zhou, Li & Turvey, Calum G., 2014. "Climate change, adaptation and China's grain production," China Economic Review, Elsevier, vol. 28(C), pages 72-89.
    6. Sampson, Gabriel & Hendricks, Nathan P. & Taylor, Mykel R., 2018. "Land Market Valuation of Groundwater Availability," 2018 Annual Meeting, August 5-7, Washington, D.C. 274320, Agricultural and Applied Economics Association.
    7. Ma, Shan & Swinton, Scott M., 2011. "Valuation of ecosystem services from rural landscapes using agricultural land prices," Ecological Economics, Elsevier, vol. 70(9), pages 1649-1659, July.
    8. Lee, Juhee & Hendricks, Nathan P., 2022. "Crop Choice Decisions in Response to Soil Salinization on Irrigated Land in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322602, Agricultural and Applied Economics Association.
    9. Yoo, James & Simonit, Silvio & Connors, John P. & Maliszewski, Paul J. & Kinzig, Ann P. & Perrings, Charles, 2013. "The value of agricultural water rights in agricultural properties in the path of development," Ecological Economics, Elsevier, vol. 91(C), pages 57-68.
    10. Hansen, Zeynep K. & Lowe, Scott E. & Xu, Wenchao, 2014. "Long-term impacts of major water storage facilities on agriculture and the natural environment: Evidence from Idaho (U.S.)," Ecological Economics, Elsevier, vol. 100(C), pages 106-118.
    11. Howard, Peter & Sterner, Thomas, 2014. "Raising the Temperature on Food Prices: Climate Change, Food Security, and the Social Cost of Carbon," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170648, Agricultural and Applied Economics Association.
    12. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    13. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    14. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    15. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    16. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    17. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    18. David Albouy & Walter Graf & Ryan Kellogg & Hendrik Wolff, 2016. "Climate Amenities, Climate Change, and American Quality of Life," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 205-246.
    19. Savage, Jeffrey & Ifft, Jennifer, 2013. "Does Pumping Pay: Groundwater Management Institutions and Cropland Values in Nebraska?," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150581, Agricultural and Applied Economics Association.
    20. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.

    More about this item

    Keywords

    Agricultural and Food Policy; Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea12:124604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.