IDEAS home Printed from https://ideas.repec.org/p/kyo/wpaper/820.html
   My bibliography  Save this paper

Stochastic Dominance Statistics for Risk Averters and Risk Seekers: An Analysis of Stock Preferences for USA and China

Author

Listed:
  • Zhidong Bai

    (KLASMOE and School of Mathematics and Statistics Northeast Normal University, Department of Statistics and Applied Probability and Risk Management Institute National University of Singapore)

  • Hua Li

    (Department of Statistics and Applied Probability National University of Singapore)

  • Michael McAleer

    (Erasmus University Rotterdam,Tinbergen Institute,Kyoto University,Complutense University of Madrid)

  • Wing-Keung Wong

    (Department of Economics Hong Kong Baptist University)

Abstract

We derive the limiting process of the stochastic dominance statistics for risk averters as well as for risk seekers when the underlying processes might be dependent or independent. We take account of the dependency of the partitions and propose a bootstrap method to decide the critical point. In addition, we illustrate the applicability of the stochastic dominance statistics for both risk averters and risk seekers to analyze the dominance relationship between the Chinese and US stock markets in the entire period as well as the sub-periods before and after the  ̄nancial crises, including the internet bubble and the recent sub-prime crisis. The  ̄ndings could be used to draw inferences on the preferences of risk averters and risk seekers in investing in the Chinese and US stock markets. The results also enable us to examine whether there is any arbitrage opportunity in these markets and whether these markets are e±cient and investors are rational.

Suggested Citation

  • Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2012. "Stochastic Dominance Statistics for Risk Averters and Risk Seekers: An Analysis of Stock Preferences for USA and China," KIER Working Papers 820, Kyoto University, Institute of Economic Research.
  • Handle: RePEc:kyo:wpaper:820
    as

    Download full text from publisher

    File URL: http://www.kier.kyoto-u.ac.jp/DP/DP820.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. M. S. Feldstein, 1969. "Mean-Variance Analysis in the Theory of Liquidity Preference and Portfolio Selection," Review of Economic Studies, Oxford University Press, vol. 36(1), pages 5-12.
    2. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 735-765.
    3. Guo, Xu & Zhu, Xuehu & Wong, Wing-Keung & Zhu, Lixing, 2013. "A note on almost stochastic dominance," Economics Letters, Elsevier, vol. 121(2), pages 252-256.
    4. Bishop, John A & Formby, John P & Thistle, Paul D, 1992. "Convergence of the South and Non-South Income Distributions, 1969-1979," American Economic Review, American Economic Association, vol. 82(1), pages 262-272, March.
    5. Wong, Wing-Keung & Li, Chi-Kwong, 1999. "A note on convex stochastic dominance," Economics Letters, Elsevier, vol. 62(3), pages 293-300, March.
    6. Zhidong Bai & Yongchang Hui & Wing-Keung Wong & Ričardas Zitikis, 2012. "Prospect Performance Evaluation: Making a Case for a Non-asymptotic UMPU Test," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(4), pages 703-732, September.
    7. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    8. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," Review of Economic Studies, Oxford University Press, vol. 36(3), pages 335-346.
    9. James P. Quirk & Rubin Saposnik, 1962. "Admissibility and Measurable Utility Functions," Review of Economic Studies, Oxford University Press, vol. 29(2), pages 140-146.
    10. Thierry Post & Haim Levy, 2005. "Does Risk Seeking Drive Stock Prices? A Stochastic Dominance Analysis of Aggregate Investor Preferences and Beliefs," Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 925-953.
    11. Harry Markowitz, 1952. "The Utility of Wealth," Journal of Political Economy, University of Chicago Press, vol. 60, pages 151-151.
    12. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2010. "Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach," Energy Economics, Elsevier, vol. 32(5), pages 979-986, September.
    13. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Investor preferences for oil spot and futures based on mean-variance and stochastic dominance," Econometric Institute Research Papers EI 2010-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Sébastien Lleo & William T. Ziemba, 2013. "Stock Market Crashes In 2007–2009: Were We Able To Predict Them?," World Scientific Book Chapters, in: Oliviero Roggi & Edward I Altman (ed.), Managing and Measuring Risk Emerging Global Standards and Regulations After the Financial Crisis, chapter 13, pages 457-499, World Scientific Publishing Co. Pte. Ltd..
    15. Jarrow, Robert, 1986. "The Relationship between Arbitrage and First Order Stochastic Dominance," Journal of Finance, American Finance Association, vol. 41(4), pages 915-921, September.
    16. Richard H. Thaler & Eric J. Johnson, 1990. "Gambling with the House Money and Trying to Break Even: The Effects of Prior Outcomes on Risky Choice," Management Science, INFORMS, vol. 36(6), pages 643-660, June.
    17. Wing-Keung Wong & Chenghu Ma, 2005. "Preferences over Meyer’s Location-Scale Family," Departmental Working Papers wp0506, National University of Singapore, Department of Economics.
    18. Chan, Chia-Ying & de Peretti, Christian & Qiao, Zhuo & Wong, Wing-Keung, 2012. "Empirical test of the efficiency of the UK covered warrants market: Stochastic dominance and likelihood ratio test approach," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 162-174.
    19. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    20. Zhidong Bai & Hua Li & Huixia Liu & Wing‐Keung Wong, 2011. "Test statistics for prospect and Markowitz stochastic dominances with applications," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 278-303, July.
    21. Egozcue, Martín & García, Luis Fuentes & Wong, Wing-Keung & Zitikis, Ricardas, 2011. "Do investors like to diversify? A study of Markowitz preferences," European Journal of Operational Research, Elsevier, vol. 215(1), pages 188-193, November.
    22. Dominic Gasbarro & Wing-Keung Wong & J. Kenton Zumwalt, 2007. "Stochastic Dominance Analysis of iShares," The European Journal of Finance, Taylor & Francis Journals, vol. 13(1), pages 89-101.
    23. Fong, Wai Mun & Wong, Wing Keung & Lean, Hooi Hooi, 2005. "International momentum strategies: a stochastic dominance approach," Journal of Financial Markets, Elsevier, vol. 8(1), pages 89-109, February.
    24. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    25. Csaba Fábián & Gautam Mitra & Diana Roman & Victor Zverovich, 2011. "An enhanced model for portfolio choice with SSD criteria: a constructive approach," Quantitative Finance, Taylor & Francis Journals, vol. 11(10), pages 1525-1534.
    26. Chakravarty, Sugato & Sarkar, Asani & Wu, Lifan, 1998. "Information asymmetry, market segmentation and the pricing of cross-listed shares: theory and evidence from Chinese A and B shares," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 8(3-4), pages 325-356, December.
    27. Egozcue, Martin & Wong, Wing-Keung, 2010. "Gains from diversification on convex combinations: A majorization and stochastic dominance approach," European Journal of Operational Research, Elsevier, vol. 200(3), pages 893-900, February.
    28. Anderson, Gordon, 2004. "Toward an empirical analysis of polarization," Journal of Econometrics, Elsevier, vol. 122(1), pages 1-26, September.
    29. Fong, Wai Mun & Lean, Hooi Hooi & Wong, Wing Keung, 2008. "Stochastic dominance and behavior towards risk: The market for Internet stocks," Journal of Economic Behavior & Organization, Elsevier, vol. 68(1), pages 194-208, October.
    30. Schechtman, Edna & Shelef, Amit & Yitzhaki, Shlomo & Zitikis, Ričardas, 2008. "Testing Hypotheses About Absolute Concentration Curves And Marginal Conditional Stochastic Dominance," Econometric Theory, Cambridge University Press, vol. 24(4), pages 1044-1062, August.
    31. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    32. Milton Friedman & L. J. Savage, 1948. "The Utility Analysis of Choices Involving Risk," Journal of Political Economy, University of Chicago Press, vol. 56, pages 279-279.
    33. Moshe Leshno & Haim Levy, 2002. "Preferred by "All" and Preferred by "Most" Decision Makers: Almost Stochastic Dominance," Management Science, INFORMS, vol. 48(8), pages 1074-1085, August.
    34. Ma, Chenghu & Wong, Wing-Keung, 2010. "Stochastic dominance and risk measure: A decision-theoretic foundation for VaR and C-VaR," European Journal of Operational Research, Elsevier, vol. 207(2), pages 927-935, December.
    35. Dominic Gasbarro & Wing-Keung Wong & J. Kenton Zumwalt, 2007. "Stochastic Dominance Analysis of iShares," The European Journal of Finance, Taylor & Francis Journals, vol. 13(1), pages 89-101.
    36. Lam, Kin & Liu, Taisheng & Wong, Wing-Keung, 2010. "A pseudo-Bayesian model in financial decision making with implications to market volatility, under- and overreaction," European Journal of Operational Research, Elsevier, vol. 203(1), pages 166-175, May.
    37. Haim Falk & Haim Levy, 1989. "Market Reaction to Quarterly Earnings' Announcements: A Stochastic Dominance Based Test of Market Efficiency," Management Science, INFORMS, vol. 35(4), pages 425-446, April.
    38. Wong, Wing-Keung, 2007. "Stochastic dominance and mean-variance measures of profit and loss for business planning and investment," European Journal of Operational Research, Elsevier, vol. 182(2), pages 829-843, October.
    39. Lean, Hooi-Hooi & Wong, Wing-Keung & Zhang, Xibin, 2008. "The sizes and powers of some stochastic dominance tests: A Monte Carlo study for correlated and heteroskedastic distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 30-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    2. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2015. "Preferences of risk-averse and risk-seeking investors for oil spot and futures before, during and after the Global Financial Crisis," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 204-216.
    3. Ephraim Clark & Zhuo Qiao & Wing-Keung Wong, 2016. "Theories Of Risk: Testing Investor Behavior On The Taiwan Stock And Stock Index Futures Markets," Economic Inquiry, Western Economic Association International, vol. 54(2), pages 907-924, April.
    4. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2016. "Management Science, Economics and Finance: A Connection," Tinbergen Institute Discussion Papers 16-040/III, Tinbergen Institute.
    5. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 11(1), pages 1-29, March.
    6. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, And Big Data: Connections," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 36-94, December.
    7. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, and Big Data: Connections," Documentos de Trabajo del ICAE 2018-09, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    8. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 11(1), pages 1-29, March.
    9. Lam, Kin & Lean, Hooi Hooi & Wong, Wing-Keung, 2016. "Stochastic Dominance and Investors’ Behavior towards Risk: The Hong Kong Stocks and Futures Markets," MPRA Paper 74386, University Library of Munich, Germany.
    10. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2010. "Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach," CIRJE F-Series CIRJE-F-705, CIRJE, Faculty of Economics, University of Tokyo.
    11. Bai, Zhidong & Phoon, Kok Fai & Wang, Keyan & Wong, Wing-Keung, 2013. "The performance of commodity trading advisors: A mean-variance-ratio test approach," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 188-201.
    12. Qiao, Zhuo & Wong, Wing-Keung & Fung, Joseph K.W., 2013. "Stochastic dominance relationships between stock and stock index futures markets: International evidence," Economic Modelling, Elsevier, vol. 33(C), pages 552-559.
    13. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Investor preferences for oil spot and futures based on mean-variance and stochastic dominance," Econometric Institute Research Papers EI 2010-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    15. Chan, Chia-Ying & de Peretti, Christian & Qiao, Zhuo & Wong, Wing-Keung, 2012. "Empirical test of the efficiency of the UK covered warrants market: Stochastic dominance and likelihood ratio test approach," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 162-174.
    16. Broll, Udo & Wong, Wing-Keung & Wu, Mojia, 2013. "Banking Firm and Two-Moment Decision Making," MPRA Paper 51687, University Library of Munich, Germany.
    17. Raymond H. Chan & Ephraim Clark & Xu Guo & Wing-Keung Wong, 2020. "New development on the third-order stochastic dominance for risk-averse and risk-seeking investors with application in risk management," Risk Management, Palgrave Macmillan, vol. 22(2), pages 108-132, June.
    18. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2010. "Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach," Energy Economics, Elsevier, vol. 32(5), pages 979-986, September.
    19. Hooi Lean & Kok Phoon & Wing-Keung Wong, 2013. "Stochastic dominance analysis of CTA funds," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 155-170, January.
    20. Ng, Pin & Wong, Wing-Keung & Xiao, Zhijie, 2017. "Stochastic dominance via quantile regression with applications to investigate arbitrage opportunity and market efficiency," European Journal of Operational Research, Elsevier, vol. 261(2), pages 666-678.

    More about this item

    Keywords

    Stochastic dominance; risk aversion; risk seeking; test statistic; hypothesis testing.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • G1 - Financial Economics - - General Financial Markets
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kyo:wpaper:820. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ryo Okui) The email address of this maintainer does not seem to be valid anymore. Please ask Ryo Okui to update the entry or send us the correct email address. General contact details of provider: https://edirc.repec.org/data/iekyojp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.