IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00805668.html

What cost for photovoltaic modules in 2020? Lessons from experience curve models

Author

Listed:
  • Arnaud de La Tour

    (CERNA i3 - Centre d'économie industrielle i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

  • Matthieu Glachant

    (CERNA i3 - Centre d'économie industrielle i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

  • Yann Ménière

    (CERNA i3 - Centre d'économie industrielle i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

Abstract

Except in few locations, photovoltaic generated electricity remains considerably more expensive than conventional sources. It is however expected that innovation and learning-bydoing will lead to drastic cuts in production cost in the near future. The goal of this paper is to predict the cost of PV modules out to 2020 using experience curve models, and to draw implications about the cost of PV electricity. Using annual data on photovoltaic module prices, cumulative production, R&D knowledge stock and input prices for silicon and silver over the period 1990 - 2011, we identify a experience curve model which minimizes the difference between predicted and actual module prices. This model predicts a 67% decrease of module price from 2011 to 2020. This rate implies that the cost of PV generated electricity will reach that of conventional electricity by 2020 in the sunniest countries with annual solar irradiation of 2000 kWh/year or more, such as California, Italy, and Spain.

Suggested Citation

  • Arnaud de La Tour & Matthieu Glachant & Yann Ménière, 2013. "What cost for photovoltaic modules in 2020? Lessons from experience curve models," Working Papers hal-00805668, HAL.
  • Handle: RePEc:hal:wpaper:hal-00805668
    Note: View the original document on HAL open archive server: https://minesparis-psl.hal.science/hal-00805668v2
    as

    Download full text from publisher

    File URL: https://minesparis-psl.hal.science/hal-00805668v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Catenacci, Michela & Fiorese, Giulia & Verdolini, Elena, 2012. "The future prospect of PV and CSP solar technologies: An expert elicitation survey," Energy Policy, Elsevier, vol. 49(C), pages 308-317.
    2. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    3. de la Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2011. "Innovation and international technology transfer: The case of the Chinese photovoltaic industry," Energy Policy, Elsevier, vol. 39(2), pages 761-770, February.
    4. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    5. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    6. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
    7. Ferioli, F. & Schoots, K. & van der Zwaan, B.C.C., 2009. "Use and limitations of learning curves for energy technology policy: A component-learning hypothesis," Energy Policy, Elsevier, vol. 37(7), pages 2525-2535, July.
    8. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    9. Isoard, Stephane & Soria, Antonio, 2001. "Technical change dynamics: evidence from the emerging renewable energy technologies," Energy Economics, Elsevier, vol. 23(6), pages 619-636, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huber, Matthias & Weissbart, Christoph, 2015. "On the optimal mix of wind and solar generation in the future Chinese power system," Energy, Elsevier, vol. 90(P1), pages 235-243.
    2. Hallegatte, Stephane & Fay, Marianne & Vogt-Schilb, Adrien, 2013. "Green industrial policies : when and how," Policy Research Working Paper Series 6677, The World Bank.
    3. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de La Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2013. "Predicting the costs of photovoltaic solar modules in 2020 using experience curve models," Energy, Elsevier, vol. 62(C), pages 341-348.
    2. Arnaud de La Tour & Matthieu Glachant, 2013. "How do solar photovoltaic feed-in tariffs interact with solar panel and silicon prices? An empirical study," Working Papers hal-00809449, HAL.
    3. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    4. Mauleón, Ignacio, 2016. "Photovoltaic learning rate estimation: Issues and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 507-524.
    5. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    7. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    8. Odam, Neil & de Vries, Frans P., 2020. "Innovation modelling and multi-factor learning in wind energy technology," Energy Economics, Elsevier, vol. 85(C).
    9. Geoffroy Dolphin & Michael G. Pollitt, 2018. "International spillovers and carbon pricing Policies," Working Papers EPRG 1802, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    11. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    12. Pfeiffer, Birte & Mulder, Peter, 2013. "Explaining the diffusion of renewable energy technology in developing countries," Energy Economics, Elsevier, vol. 40(C), pages 285-296.
    13. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Bergesen, Joseph D. & Suh, Sangwon, 2016. "A framework for technological learning in the supply chain: A case study on CdTe photovoltaics," Applied Energy, Elsevier, vol. 169(C), pages 721-728.
    15. Wei Jin, 2012. "Can Technological Innovation Help China Take on Its Climate Responsibility? A Computable General Equilibrium Analysis," CAMA Working Papers 2012-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    16. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    17. Maharjan, Prapti & Hauck, Mara & Kirkels, Arjan & Buettner, Benjamin & de Coninck, Heleen, 2024. "Deriving experience curves: A structured and critical approach applied to PV sector," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    18. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
    19. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    20. de Wit, Marc & Junginger, Martin & Faaij, André, 2013. "Learning in dedicated wood production systems: Past trends, future outlook and implications for bioenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 417-432.

    More about this item

    Keywords

    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00805668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.