IDEAS home Printed from https://ideas.repec.org/p/esr/wpaper/wp541.html
   My bibliography  Save this paper

Examining the Benefits of Load Shedding Strategies using a Rolling-Horizon Stochastic Mixed Complementarity Equilibrium Model

Author

Listed:
  • Devine, Mel
  • Bertsch, Valentin

Abstract

As a result of government policies increasing the amount of electricity generated from fluctuating renewable sources in many countries, the requirement for flexibility in the corresponding electricity systems increases. On the demand side, load shedding is one demand response mechanism contributing to an increased flexibility. Traditionally, load shedding was based on rather static or rotational strategies, whereby the system operator chooses the consumers for load shedding. However, ongoing technological developments provide the basis for smarter and more efficient load shedding strategies. We therefore examine the costs and strategies associated with such mechanisms by modelling an electricity market with different types of generators and consumers. Some consumers provide flexibility through load shedding only while others additionally have the ability to generate their own electricity. Focussing on the impacts of how and to whom consumers with own generation ability can supply electricity, the presence of market power and generator uncertainty, we propose a rolling horizon stochastic mixed complementarity equilibrium model, where the individual optimisation problems of each player are solved simultaneously and in equilibrium. We find that a non-static strategy reduces consumer costs while allowing consumers to provide own generation to the whole market results in minimal benefits. The presence of market power was found to increase costs to consumers.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Devine, Mel & Bertsch, Valentin, 2016. "Examining the Benefits of Load Shedding Strategies using a Rolling-Horizon Stochastic Mixed Complementarity Equilibrium Model," Papers WP541, Economic and Social Research Institute (ESRI).
  • Handle: RePEc:esr:wpaper:wp541
    as

    Download full text from publisher

    File URL: http://www.esri.ie/pubs/WP541.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ströhle, Philipp & Flath, Christoph M., 2016. "Local matching of flexible load in smart grids," European Journal of Operational Research, Elsevier, vol. 253(3), pages 811-824.
    2. Martínez Ceseña, Eduardo A. & Good, Nicholas & Mancarella, Pierluigi, 2015. "Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users," Energy Policy, Elsevier, vol. 82(C), pages 222-232.
    3. Gabriel, Steven A. & Zhuang, Jifang & Kiet, Supat, 2005. "A large-scale linear complementarity model of the North American natural gas market," Energy Economics, Elsevier, vol. 27(4), pages 639-665, July.
    4. Egging, Ruud, 2013. "Benders Decomposition for multi-stage stochastic mixed complementarity problems – Applied to a global natural gas market model," European Journal of Operational Research, Elsevier, vol. 226(2), pages 341-353.
    5. Jan Abrell & Hannes Weigt, 2012. "Combining Energy Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 377-401, September.
    6. Lynch, Muireann Á. & Devine, Mel, 2015. "Investment vs. Refurbishment: Examining Capacity Payment Mechanisms Using Mixed Complementarity Problems With Endogenous Probability," Papers WP507, Economic and Social Research Institute (ESRI).
    7. Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2016. "Flexibility in Europe's power sector — An additional requirement or an automatic complement?," Energy Economics, Elsevier, vol. 53(C), pages 118-131.
    8. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    9. Lee, Chia-Yen, 2016. "Nash-profit efficiency: A measure of changes in market structures," European Journal of Operational Research, Elsevier, vol. 255(2), pages 659-663.
    10. Steven A. Gabriel & Supat Kiet & Jifang Zhuang, 2005. "A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets," Operations Research, INFORMS, vol. 53(5), pages 799-818, October.
    11. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    12. Esther, B. Priya & Kumar, K. Sathish, 2016. "A survey on residential Demand Side Management architecture, approaches, optimization models and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 342-351.
    13. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    14. Arora, Siddharth & Taylor, James W., 2016. "Forecasting electricity smart meter data using conditional kernel density estimation," Omega, Elsevier, vol. 59(PA), pages 47-59.
    15. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    16. Bopp, A. E. & Kannan, V. R. & Palocsay, S. W. & Stevens, S. P., 1996. "An optimization model for planning natural gas purchases, transportation, storage and deliverability," Omega, Elsevier, vol. 24(5), pages 511-522, October.
    17. Huppmann, Daniel, 2013. "Endogenous production capacity investment in natural gas market equilibrium models," European Journal of Operational Research, Elsevier, vol. 231(2), pages 503-506.
    18. Leahy, Eimear & Tol, Richard S.J., 2011. "An estimate of the value of lost load for Ireland," Energy Policy, Elsevier, vol. 39(3), pages 1514-1520, March.
    19. Valeria Di Cosmo, Sean Lyons, and Anne Nolan, 2014. "Estimating the Impact of Time-of-Use Pricing on Irish Electricity Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    20. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    21. Gabriel, Steven A. & Zhuang, Jifang & Egging, Ruud, 2009. "Solving stochastic complementarity problems in energy market modeling using scenario reduction," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1028-1040, September.
    22. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    23. Mel Devine & James Gleeson & John Kinsella & David Ramsey, 2014. "A Rolling Optimisation Model of the UK Natural Gas Market," Networks and Spatial Economics, Springer, vol. 14(2), pages 209-244, June.
    24. Hannes Weigt & Jan Abrell, 2012. "Storage and Investments in a Combined Energy Network Model," EcoMod2012 4319, EcoMod.
    25. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bertsch, Valentin & Devine, Mel, 2019. "The Role of Demand Response in Mitigating Market Power — A Quantitative Analysis Using a Stochastic Market Equilibrium Model," Papers WP635, Economic and Social Research Institute (ESRI).
    2. Lynch, Muireann & Devine, Mel T. & Bertsch, Valentin, 2019. "The role of power-to-gas in the future energy system: Market and portfolio effects," Energy, Elsevier, vol. 185(C), pages 1197-1209.
    3. Bertsch, Valentin & Devine, Mel & Sweeney, Conor & Parnell, Andrew C., 2018. "Analysing long-term interactions between demand response and different electricity markets using a stochastic market equilibrium model," Papers WP585, Economic and Social Research Institute (ESRI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:esr:wpaper:wp541. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sarah Burns). General contact details of provider: http://edirc.repec.org/data/esriiie.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.