IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Forecasting the Prices and Rents for Flats in Large German Cities

  • Konstantin A. Kholodilin
  • Andreas Mense

In this paper, we make multi-step forecasts of the monthly growth rates of the prices and rents for flats in 26 largest German cities. Given the small time dimension, the forecasts are done in a panel-data format. In addition, we use panel models that account for spatial dependence between the growth rates of housing prices and rents. Using a quasi out-of-sample forecasting exercise, we find that both pooling and accounting for spatial effects helps to substantially improve the forecast performance compared to the benchmark models estimated for each of the cities separately. In addition, a true out-of-sample forecasting of the growth rates of flats' prices and rents for the next six months is done. It shows that in most cities both prices and rents for flats are going to increase. In some cities, the average monthly growth rate even exceeds 1%, which is a very strong increase compared to the overall price level increase of about 2% per year.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by DIW Berlin, German Institute for Economic Research in its series Discussion Papers of DIW Berlin with number 1207.

in new window

Length: 30 p.
Date of creation: 2012
Date of revision:
Handle: RePEc:diw:diwwpp:dp1207
Contact details of provider: Postal: Mohrenstraße 58, D-10117 Berlin
Phone: xx49-30-89789-0
Fax: xx49-30-89789-200
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Brücker, Herbert & Siliverstovs, Boriss, 2005. "On the Estimation and Forecasting of International Migration: How Relevant Is Heterogeneity Across Countries?," IZA Discussion Papers 1710, Institute for the Study of Labor (IZA).
  2. Baltagi, Badi H. & Griffin, James M., 1997. "Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline," Journal of Econometrics, Elsevier, vol. 77(2), pages 303-327, April.
  3. Badi H. Baltagi & James M. Griffin & Weiwen Xiong, 2000. "To Pool Or Not To Pool: Homogeneous Versus Hetergeneous Estimations Applied to Cigarette Demand," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 117-126, February.
  4. Badi H. Baltagi & Georges Bresson & James M. Griffin & Alain Pirotte, 2003. "Homogeneous, heterogeneous or shrinkage estimators? Some empirical evidence from French regional gasoline consumption," Empirical Economics, Springer, vol. 28(4), pages 795-811, November.
  5. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2002. "Comparison of forecast performance for homogeneous, heterogeneous and shrinkage estimators: Some empirical evidence from US electricity and natural-gas consumption," Economics Letters, Elsevier, vol. 76(3), pages 375-382, August.
  6. M. Ruth & K. Donaghy & P. Kirshen, 2006. "Introduction," Chapters, in: Regional Climate Change and Variability, chapter 1 Edward Elgar.
  7. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
  8. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
  9. Badi Baltagi & Dong Li, 2006. "Prediction in the Panel Data Model with Spatial Correlation: the Case of Liquor," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(2), pages 175-185.
  10. Eric Girardin & Konstantin A. Kholodilin, 2011. "How helpful are spatial effects in forecasting the growth of Chinese provinces?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 622-643, November.
  11. Badi H. Baltagi & Georges Bresson & Alain Pirotte, 2004. "Tobin q: Forecast performance for hierarchical Bayes, shrinkage, heterogeneous and homogeneous panel data estimators," Empirical Economics, Springer, vol. 29(1), pages 107-113, January.
  12. repec:oup:restud:v:58:y:1991:i:2:p:277-97 is not listed on IDEAS
  13. repec:zbw:rwirep:0294 is not listed on IDEAS
  14. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German L�nder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
  15. repec:sae:ecolab:v:16:y:2006:i:2:p:1-2 is not listed on IDEAS
  16. Konstantin A. Kholodilin & Andreas Mense, 2012. "Internet-Based Hedonic Indices of Rents and Prices for Flats: Example of Berlin," Discussion Papers of DIW Berlin 1191, DIW Berlin, German Institute for Economic Research.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1207. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.