IDEAS home Printed from https://ideas.repec.org/p/dia/wpaper/dt201508.html
   My bibliography  Save this paper

The Gender Wage Gap in France: the Role of Non-Cognitive Characteristics

Author

Listed:
  • Isabelle Bensidoun

    () (Centre d’études de l’emploi, PSL, Université Paris-Dauphine, LEDa, IRD UMR DIAL)

  • Danièle Trancart

    () (Centre d’études de l’emploi)

Abstract

(english) Differences between men and women in non-cognitive skills could be the reason why the gender gap closing didn’t improve since the middle of the nineties. To investigate this issue in the case of France we used the "Génération 1998 à 10 ans" database conducted by the Céreq. This survey provides information on gender preferences differences in terms of career versus family, risk attitudes or the vision individuals have of their professional futures. As these non-cognitive factors are likely to influence wages but also occupational choices, the decomposition of wage differentials proposed by Brown, Moon and Zoloth (1980) is implemented. This makes it possible to consider this indirect mechanism by which non-cognitive variables can determine wages, but also the potentially discriminatory nature of occupational segregation. We find that differences in non-cognitive skills matter, 6.3% of the total gender wage gap, that is almost twice as experience, but a large part, 60% of the gap, remains unexplained by the characteristics considered in this work. _________________________________ (français) La réduction des écarts de salaires entre les hommes et les femmes est depuis maintenant deux décennies au point mort. Le fait que les unes et les autres se distinguent en matière de caractéristiques non cognitives constitue une des raisons qui pourrait expliquer qu’il en soit ainsi. Dans ce travail, à partir de l’enquête Génération 1998 à 10 ans réalisée par le Céreq, le rôle que les préférences en termes de carrière versus famille, l’attitude face au risque ou le rapport à son avenir professionnel peuvent avoir sur les écarts de salaires est examiné. Comme ces facteurs non cognitifs sont susceptibles d’influencer les salaires mais aussi les choix professionnels, la décomposition des écarts de salaires proposée par Brown, Moon et Zoloth (1980) est mise en oeuvre. Celle-ci permet de tenir compte de ce mécanisme indirect par lequel les variables non cognitives peuvent déterminer les salaires, mais aussi du caractère potentiellement discriminatoire de la ségrégation occupationnelle. Si les différences de caractéristiques non cognitives comptent, 6,3 % de l’écart de salaires total, soit près de deux fois plus que l’expérience, 60 % restent inexpliqués par les caractéristiques retenues.

Suggested Citation

  • Isabelle Bensidoun & Danièle Trancart, 2015. "The Gender Wage Gap in France: the Role of Non-Cognitive Characteristics," Working Papers DT/2015/08, DIAL (Développement, Institutions et Mondialisation).
  • Handle: RePEc:dia:wpaper:dt201508
    as

    Download full text from publisher

    File URL: http://www.dial.ird.fr/media/ird-sites-d-unites-de-recherche/dial/documents/publications/doc_travail/2015/2015-08
    File Function: First version, 2015
    Download Restriction: no

    References listed on IDEAS

    as
    1. Myeong-Su Yun, 2005. "A Simple Solution to the Identification Problem in Detailed Wage Decompositions," Economic Inquiry, Western Economic Association International, vol. 43(4), pages 766-772, October.
    2. George A. Akerlof & Rachel E. Kranton, 2000. "Economics and Identity," The Quarterly Journal of Economics, Oxford University Press, vol. 115(3), pages 715-753.
    3. Xin Meng & Dominique Meurs, 2001. "Différences de structure des emplois et écart salarial entre hommes et femmes en France," Économie et Prévision, Programme National Persée, vol. 148(2), pages 113-126.
    4. Claudia Goldin, 2006. "The Quiet Revolution That Transformed Women's Employment, Education, and Family," American Economic Review, American Economic Association, vol. 96(2), pages 1-21, May.
    5. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    6. Katrin John & Stephan Thomsen, 2014. "Heterogeneous returns to personality: the role of occupational choice," Empirical Economics, Springer, vol. 47(2), pages 553-592, September.
    7. Nicole M. Fortin, 2008. "The Gender Wage Gap among Young Adults in the United States: The Importance of Money versus People," Journal of Human Resources, University of Wisconsin Press, vol. 43(4).
    8. Goldin, Claudia, 2006. "The Quiet Revolution That Transformed Women’s Employment, Education, and Family," Scholarly Articles 2943933, Harvard University Department of Economics.
    9. Ekelund, Jesper & Johansson, Edvard & Jarvelin, Marjo-Riitta & Lichtermann, Dirk, 2005. "Self-employment and risk aversion--evidence from psychological test data," Labour Economics, Elsevier, vol. 12(5), pages 649-659, October.
    10. Cameron,A. Colin & Trivedi,Pravin K., 2008. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9787111235767, January.
    11. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    12. Bonin, Holger & Dohmen, Thomas & Falk, Armin & Huffman, David & Sunde, Uwe, 2007. "Cross-sectional earnings risk and occupational sorting: The role of risk attitudes," Labour Economics, Elsevier, vol. 14(6), pages 926-937, December.
    13. Ronald L. Oaxaca & Michael R. Ransom, 1999. "Identification in Detailed Wage Decompositions," The Review of Economics and Statistics, MIT Press, vol. 81(1), pages 154-157, February.
    14. Mukesh Eswaran, 2014. "Why Gender Matters in Economics," Economics Books, Princeton University Press, edition 1, number 10362.
    15. Cramer, J. S. & Hartog, J. & Jonker, N. & Van Praag, C. M., 2002. "Low risk aversion encourages the choice for entrepreneurship: an empirical test of a truism," Journal of Economic Behavior & Organization, Elsevier, vol. 48(1), pages 29-36, May.
    16. Claude Thélot & Louis-André Vallet, 2000. "La réduction des inégalités sociales devant l'école depuis le début du siècle," Économie et Statistique, Programme National Persée, vol. 334(1), pages 3-32.
    17. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
    18. SeEun Jung, 2017. "The gender wage gap and sample selection via risk attitudes," International Journal of Manpower, Emerald Group Publishing, vol. 38(2), pages 318-335, May.
    19. Randall K. Filer, 1983. "Sexual Differences in Earnings: The Role of Individual Personalities and Tastes," Journal of Human Resources, University of Wisconsin Press, vol. 18(1), pages 82-99.
    20. Wayne A. Grove & Andrew Hussey & Michael Jetter, 2011. "The Gender Pay Gap Beyond Human Capital: Heterogeneity in Noncognitive Skills and in Labor Market Tastes," Journal of Human Resources, University of Wisconsin Press, vol. 46(4), pages 827-874.
    21. Shoshana Neuman & Ronald Oaxaca, 2004. "Wage Decompositions with Selectivity-Corrected Wage Equations: A Methodological Note," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 2(1), pages 3-10, April.
    22. Ham, Roger & Junankar, Pramod N. (Raja) & Wells, Robert, 2009. "Occupational Choice: Personality Matters," IZA Discussion Papers 4105, Institute for the Study of Labor (IZA).
    23. Dominique Meurs & Sophie Ponthieux, 2006. "L'écart des salaires entre les femmes et les hommes peut-il encore baisser ?," Économie et Statistique, Programme National Persée, vol. 398(1), pages 99-129.
    24. Gerrit Mueller & Erik Plug, 2006. "Estimating the Effect of Personality on Male and Female Earnings," ILR Review, Cornell University, ILR School, vol. 60(1), pages 3-22, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    gender wage gap; Brown-Moon and Zoloth wage decomposition; noncognitive factors; occupational segregation.;

    JEL classification:

    • J16 - Labor and Demographic Economics - - Demographic Economics - - - Economics of Gender; Non-labor Discrimination
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials
    • J38 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Public Policy
    • J71 - Labor and Demographic Economics - - Labor Discrimination - - - Hiring and Firing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dia:wpaper:dt201508. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Loic Le Pezennec). General contact details of provider: http://edirc.repec.org/data/diallfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.