IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

On The (Intradaily) Seasonality And Dynamics Of A Financial Point Process: A Semiparametric Approach

  • David Veredas
  • Juan M. Rodríguez-Poo
  • Antoni Espasa


A component model for the analysis of financial durations is proposed. The components are the long-run dynamics and the seasonality. The later is left unspecified and the former is assumed to fall within the class of certain family of parametric functions. The joint model is estimated by maximizing a (local) quasi-likelihood function, and the resulting nonparametric estimator of the seasonal curve has an explicit form that turns out to be a transformation of the Nadaraya-Watson estimator. The estimators of the parameters of interest are shown to be root-N consistent and asymptotically efficient. Furthermore, the seasonal curve is also estimated consistently. The methodology is applied to the trade duration process of Bankinter, a medium size Spanish bank traded in Bolsa de Madrid. We show that adjusting data by seasonality produces important misspecifications.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws013321.

in new window

Date of creation: Jun 2001
Date of revision:
Handle: RePEc:cte:wsrepe:ws013321
Contact details of provider: Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
Phone: 6249847
Fax: 6249849
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Frank Gerhard & Nikolaus Hautsch, 1999. "Volatility Estimation on the Basis of Price Intensities," CoFE Discussion Paper 99-19, Center of Finance and Econometrics, University of Konstanz.
  2. Almeida, Alvaro & Goodhart, Charles & Payne, Richard, 1998. "The Effects of Macroeconomic News on High Frequency Exchange Rate Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(03), pages 383-408, September.
  3. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
  4. Ghysels, Eric, 2000. "Some Econometric Recipes for High-Frequency Data Cooking," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 154-63, April.
  5. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
  6. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
  7. J. Grammig & K. Maurer, 1999. "Non-Monotonic Hazard Functions and the Autoregressive Conditional Duration Model," SFB 373 Discussion Papers 1999,50, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  8. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  9. Robert F. Engle & Takatoshi Ito & Wen-Ling Lin, 1988. "Meteor Showers or Heat Waves? Heteroskedastic Intra-Daily Volatility in the Foreign Exchange Market," NBER Working Papers 2609, National Bureau of Economic Research, Inc.
  10. Andersen, Torben G & Bollerslev, Tim, 1997. " Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
  11. GHYSELS, Eric & HARVEY, Andrew & RENAULT, Eric, 1995. "Stochastic Volatility," CORE Discussion Papers 1995069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  12. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
  13. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  14. Baillie, Richard T & Bollerslev, Tim, 1991. "Intra-day and Inter-market Volatility in Foreign Exchange Rates," Review of Economic Studies, Wiley Blackwell, vol. 58(3), pages 565-85, May.
  15. Gourieroux Christian & Monfort Alain & Trognon A, 1981. "Pseudo maximum likelihood methods : theory," CEPREMAP Working Papers (Couverture Orange) 8129, CEPREMAP.
  16. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  17. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
  18. Gourieroux, Christian & Jasiak, Joanna & Le Fol, Gaelle, 1999. "Intra-day market activity," Journal of Financial Markets, Elsevier, vol. 2(3), pages 193-226, August.
  19. Bollerslev, Tim & Domowitz, Ian, 1993. " Trading Patterns and Prices in the Interbank Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 48(4), pages 1421-43, September.
  20. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
  21. Harris, Lawrence, 1986. "A transaction data study of weekly and intradaily patterns in stock returns," Journal of Financial Economics, Elsevier, vol. 16(1), pages 99-117, May.
  22. Torben G. Andersen & Tim Bollerslev, 1998. "Deutsche Mark-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies," Journal of Finance, American Finance Association, vol. 53(1), pages 219-265, 02.
  23. Rombouts, Jeroen V. K. & Bauwens, Luc, 2004. "Econometrics," Papers 2004,33, Humboldt-Universität Berlin, Center for Applied Statistics and Economics (CASE).
  24. Cox, Dennis D. & Kim, Tae Yoon, 1995. "Moment bounds for mixing random variables useful in nonparametric function estimation," Stochastic Processes and their Applications, Elsevier, vol. 56(1), pages 151-158, March.
  25. Richard Payne, 1996. "Announcement Effects and Seasonality in the Intra-day Foreign Exchange Market," FMG Discussion Papers dp238, Financial Markets Group.
  26. Feike C. Drost & Bas J. M. Werker, 2000. "Efficient Estimation in Semiparametric Time Series: the ACD Model," Econometric Society World Congress 2000 Contributed Papers 0836, Econometric Society.
  27. Beltratti, Andrea & Morana, Claudio, 1999. "Computing value at risk with high frequency data," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 431-455, December.
  28. WEI, Steven X., 1997. "A Bayesian approach to dynamic Tobit models," CORE Discussion Papers 1997081, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws013321. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.