IDEAS home Printed from https://ideas.repec.org/p/cee/wpcepe/04-32.html
   My bibliography  Save this paper

Efficiency Measurement in Network Industries: Application to the Swiss Railway Companies

Author

Listed:
  • Mehdi Farsi

    (Center for Energy Policy and Economics CEPE, Department of Management, Technology and Economics, ETH Zurich, Switzerland)

  • Massimo Filippini

    (Center for Energy Policy and Economics CEPE, Department of Management, Technology and Economics, ETH Zurich, Switzerland)

  • William Greene

    (Department of Economics, Stern School of Business, New York University, 44 West 4th St., New York, NY 10012, USA)

Abstract

This paper examines the performance of several panel data models to measure cost and scale efficiency in network industries. Network industries are characterized by a high degree of heterogeneity, much of which is network-specific and unobserved. The unaccounted-for heterogeneity can create bias in the inefficiency estimates. The stochastic frontier models that include additional firm-specific effects, such as the random-constant frontier model proposed by Greene (2004), can control for unobserved network effects that are random but time-invariant. In cases like railway networks the unobserved heterogeneity is potentially correlated with other exogenous, but observed, factors such as network size and density. In such cases the correlation with explanatory variables may bias the coefficients of the cost function in a random-effects specification. However, these correlations can be integrated into the model using Mundlak’s (1978) formulation. The unobserved network effects and the resulting biases are studied through a comparative study of a series of stochastic frontier models. These models are applied to a panel of 50 railway companies operating over a 13-year period in Switzerland. Different specifications are compared regarding the estimation of both cost frontier coefficients and inefficiency scores.

Suggested Citation

  • Mehdi Farsi & Massimo Filippini & William Greene, 2004. "Efficiency Measurement in Network Industries: Application to the Swiss Railway Companies," CEPE Working paper series 04-32, CEPE Center for Energy Policy and Economics, ETH Zurich.
  • Handle: RePEc:cee:wpcepe:04-32
    as

    Download full text from publisher

    File URL: http://www.cepe.ethz.ch/publications/workingPapers/CEPE_WP32.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    2. Massimo Filippini & Paola Prioni, 2003. "The influence of ownership on the cost of bus service provision in Switzerland - an empirical illustration," Applied Economics, Taylor & Francis Journals, vol. 35(6), pages 683-690.
    3. Pedro Cantos & José Pastor & Lorenzo Serrano, 1999. "Productivity, efficiency and technical change in the European railways: A non-parametric approach," Transportation, Springer, vol. 26(4), pages 337-357, November.
    4. Filippini, Massimo & Maggi, Rico, 1993. "Efficiency and Regulation in the Case of the Swiss Private Railways," Journal of Regulatory Economics, Springer, vol. 5(2), pages 199-216, June.
    5. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    6. Mancuso, Paolo & Reverberi, Pierfrancesco, 2003. "Operating costs and market organization in railway services. The case of Italy, 1980-1995," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 43-61, January.
    7. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2006. "Cost Efficiency in Regional Bus Companies: An Application of Alternative Stochastic Frontier Models," Journal of Transport Economics and Policy, University of Bath, vol. 40(1), pages 95-118, January.
    8. William Greene, 2004. "Distinguishing between heterogeneity and inefficiency: stochastic frontier analysis of the World Health Organization's panel data on national health care systems," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 959-980, October.
    9. Jara-Díaz, Sergio R. & Basso, Leonardo J., 2003. "Transport cost functions, network expansion and economies of scope," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(4), pages 271-288, July.
    10. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    11. Estache, Antonio & Gonzalez, Marianela & Trujillo, Lourdes, 2002. "What Does "Privatization" Do for Efficiency? Evidence from Argentina's and Brazil's Railways," World Development, Elsevier, vol. 30(11), pages 1885-1897, November.
    12. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    13. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    14. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    15. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2005. "Unobserved heterogeneity in stochastic cost frontier models: an application to Swiss nursing homes," Applied Economics, Taylor & Francis Journals, vol. 37(18), pages 2127-2141.
    16. Bill Greene with Antonio Alvarez (Univ. of Oviedo) & Carlos Arias (Univ. of Leon), 2004. "Accounting For Unobservables In Production Models: Management And Inefficiency," Econometric Society 2004 Australasian Meetings 341, Econometric Society.
    17. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    18. Banos-Pino, Jose & Fernandez-Blanco, Victor & Rodriguez-Alvarez, Ana, 2002. "The allocative efficiency measure by means of a distance function: The case of Spanish public railways," European Journal of Operational Research, Elsevier, vol. 137(1), pages 191-205, February.
    19. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    20. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    2. Farsi, Mehdi & Filippini, Massimo & Kuenzle, Michael, 2007. "Cost efficiency in the Swiss gas distribution sector," Energy Economics, Elsevier, vol. 29(1), pages 64-78, January.
    3. Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
    4. Mehdi Farsi & Massimo Filippini & William Greene, 2006. "Application Of Panel Data Models In Benchmarking Analysis Of The Electricity Distribution Sector," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 77(3), pages 271-290, September.
    5. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    6. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2006. "Cost Efficiency in Regional Bus Companies: An Application of Alternative Stochastic Frontier Models," Journal of Transport Economics and Policy, University of Bath, vol. 40(1), pages 95-118, January.
    7. Li, Hong-Zhou & Tian, Xian-Liang & Zou, Tao, 2015. "Impact analysis of coal-electricity pricing linkage scheme in China based on stochastic frontier cost function," Applied Energy, Elsevier, vol. 151(C), pages 296-305.
    8. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    9. Kellermann, Magnus A., 2015. "Total Factor Productivity Decomposition and Unobserved Heterogeneity in Stochastic Frontier Models," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 44(1), pages 1-25, April.
    10. Llorca, Manuel & Baños, José & Somoza, José & Arbués, Pelayo, 2014. "A latent class approach for estimating energy demands and efficiency in transport: An application to Latin America and the Caribbean," Efficiency Series Papers 2014/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    11. Hailu, Kidanemariam Berhe & Tanaka, Makoto, 2015. "A “true” random effects stochastic frontier analysis for technical efficiency and heterogeneity: Evidence from manufacturing firms in Ethiopia," Economic Modelling, Elsevier, vol. 50(C), pages 179-192.
    12. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    13. Valentin Zelenyuk & Zhichao Wang, 2023. "Random vs. Explained Inefficiency in Stochastic Frontier Analysis: The Case of Queensland Hospitals," CEPA Working Papers Series WP052023, School of Economics, University of Queensland, Australia.
    14. Concetta Castiglione & Davide Infante & Marta Zieba, 2018. "Technical efficiency in the Italian performing arts companies," Small Business Economics, Springer, vol. 51(3), pages 609-638, October.
    15. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    16. Chen, Yi-Yi & Schmidt, Peter & Wang, Hung-Jen, 2014. "Consistent estimation of the fixed effects stochastic frontier model," Journal of Econometrics, Elsevier, vol. 181(2), pages 65-76.
    17. Mehdi Farsi & Aurelio Fetz & Massimo Filippini, 2007. "Benchmarking and Regulation in the Electricity Distribution Sector," CEPE Working paper series 07-54, CEPE Center for Energy Policy and Economics, ETH Zurich.
    18. Castiglione, Concetta & Infante, Davide & Zieba, Marta, 2023. "Public support for performing arts. Efficiency and productivity gains in eleven European countries," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    19. Cullmann, Astrid & Farsi, Mehdi & Filippini Massimo, 2009. "Unobserved Heterogeneity and International Benchmarking in Public Trasport," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0904, USI Università della Svizzera italiana.
    20. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cee:wpcepe:04-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carlos Ordas (email available below). General contact details of provider: https://edirc.repec.org/data/cepetch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.