IDEAS home Printed from
   My bibliography  Save this paper

Vulnerable Growth: A Revisit


  • Nam Gang Lee

    (Economic Research Institute, Bank of Korea)


This paper studies the distributional linkages between future economic performance and current conditions by means of a flexible quantile regression method. The examination of the linkages suggests that the conditional quantiles are nonlinear, which offers a new perspective on the conditional distribution. The nonlinearity causes countercyclical volatility to break down in both the right and left tails, the breakdown being associated with positive skewness in the short-term. As a corollary, in periods of recessions accompanied by a financial crisis, downside risks inherent in the distribution are smaller than we would think otherwise based on linear quantile regression.

Suggested Citation

  • Nam Gang Lee, 2020. "Vulnerable Growth: A Revisit," Working Papers 2020-22, Economic Research Institute, Bank of Korea.
  • Handle: RePEc:bok:wpaper:2022

    Download full text from publisher

    File URL:
    File Function: Working Paper, 2020
    Download Restriction: no

    References listed on IDEAS

    1. Claessens, Stijn & Kose, M. Ayhan & Terrones, Marco E., 2012. "How do business and financial cycles interact?," Journal of International Economics, Elsevier, vol. 87(1), pages 178-190.
    2. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    3. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    4. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    5. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    6. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    7. Bernard, Carole & Czado, Claudia, 2015. "Conditional quantiles and tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 104-126.
    8. Scott Brave & R. Andrew Butters, 2012. "Diagnosing the Financial System: Financial Conditions and Financial Stress," International Journal of Central Banking, International Journal of Central Banking, vol. 8(2), pages 191-239, June.
    9. Arthur F. Burns & Wesley C. Mitchell, 1946. "The Basic Measures of Cyclical Behavior," NBER Chapters, in: Measuring Business Cycles, pages 115-202, National Bureau of Economic Research, Inc.
    10. Geert Bekaert & Eric Engstrom, 2017. "Asset Return Dynamics under Habits and Bad Environment-Good Environment Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 125(3), pages 713-760.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Bo & Joe, Harry, 2019. "Prediction based on conditional distributions of vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 45-63.
    2. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    3. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    4. Schüler, Yves S. & Hiebert, Paul P. & Peltonen, Tuomas A., 2020. "Financial cycles: Characterisation and real-time measurement," Journal of International Money and Finance, Elsevier, vol. 100(C).
    5. Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
    6. Vítor Castro & Rodrigo Martins, 2020. "Riding the Wave of Credit: Are Longer Expansions Really a Bad Omen?," Open Economies Review, Springer, vol. 31(4), pages 729-751, September.
    7. Laeven, Luc & Perez-Quiros, Gabriel & Rivas, María Dolores Gadea, 2020. "Growth-and-risk trade-off," Working Paper Series 2397, European Central Bank.
    8. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    9. Fritz, Marlon, 2019. "Steady state adjusting trends using a data-driven local polynomial regression," Economic Modelling, Elsevier, vol. 83(C), pages 312-325.
    10. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    11. Holger Fink & Yulia Klimova & Claudia Czado & Jakob Stober, 2016. "Regime switching vine copula models for global equity and volatility indices," Papers 1604.05598,
    12. Stijn Claessens & M Ayhan Kose, 2017. "Asset prices and macroeconomic outcomes: a survey," BIS Working Papers 676, Bank for International Settlements.
    13. Matthias Fischer & Daniel Kraus & Marius Pfeuffer & Claudia Czado, 2017. "Stress Testing German Industry Sectors: Results from a Vine Copula Based Quantile Regression," Risks, MDPI, Open Access Journal, vol. 5(3), pages 1-13, July.
    14. Balázs Égert & Douglas Sutherland, 2014. "The Nature of Financial and Real Business Cycles: The Great Moderation and Banking Sector Pro-Cyclicality," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(1), pages 98-117, February.
    15. Camila Figueroa & Jorge Fornero & Pablo García, 2019. "Hindsight vs. Real time measurement of the output gap: Implications for the Phillips curve in the Chilean Case," Working Papers Central Bank of Chile 854, Central Bank of Chile.
    16. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    17. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    18. Claudio Borio & Mathias Drehmann & Dora Xia Author-X-Name_First: Dora, 2019. "Predicting recessions: financial cycle versus term spread," BIS Working Papers 818, Bank for International Settlements.
    19. Sifat, Imtiaz & Ghafoor, Abdul & Ah Mand, Abdollah, 2021. "The COVID-19 pandemic and speculation in energy, precious metals, and agricultural futures," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    20. Bluedorn, John C. & Decressin, Jörg & Terrones, Marco E., 2016. "Do asset price drops foreshadow recessions?," International Journal of Forecasting, Elsevier, vol. 32(2), pages 518-526.

    More about this item


    D-vine Quantile Regression; Conditional Quantiles; Nonlinearity; Downside Risk;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bok:wpaper:2022. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Economic Research Institute (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.