IDEAS home Printed from https://ideas.repec.org/p/ags/kucawp/180062.html
   My bibliography  Save this paper

Integrated soil fertility management: from concept to practice in eastern DR Congo

Author

Listed:
  • Lambrecht, Isabel
  • Vanlauwe, Bernard
  • Maertens, Miet

Abstract

Many paradigms on sustainable agricultural intensification adhere to a combination of different and complementary agricultural technologies. Whether such a paradigm survives in practice depends on how, and if, farmers combine these technologies on their fields. The main biophysical rationale for farmers to combine different technologies is the existence of reinforcing yield effects. But farmers may face constraints that lead to a socio-economic rationale for interrelationships in the application of different technologies that contradict the biophysical rationale. There is little evidence on how and under which conditions farmers combine different agricultural technologies. In this paper, we focus on integrated soil fertility management (ISFM) and investigate how the concept is put into practice in South-Kivu, eastern Democratic Republic of the Congo (DRC). ISFM necessarily includes the use of improved germplasm, organic inputs and mineral fertilizer, and strongly emphasizes the complementarities and synergies that can arise when these technologies are jointly applied. We investigate whether these different ISFM technology components are applied jointly, sequentially or independently, and whether that matters for the long term use of the technology. We use original survey data from 500 farms in two territories in South-Kivu. We combine a descriptive statistical analysis and a factor analysis to understand interrelationships in the application of ISFM technologies, and relate it to technology characteristics and the local context. We find that few farmers in the area have reached “full ISFM”, and that application of ISFM technologies occurs sequentially, rather than simultaneously. At plot level two subsets of technologies can be distinguished. The first subset is characterized by more resource-intensive technologies (row planting and mineral fertilizer). The second consists of less resource-intensive technologies (improved legume and maize varieties). These subsets behave as supplements rather than as complements, and adoption within and among each subset is more sequential than simultaneous. Generally, farmers adopt less resource-intensive technologies first, and then adopt more resource-intensive technologies. Our results imply that there is a disconnect between the theoretical arguments in the agronomic ISFM literature, and the actual patterns of ISFM application on farmers’ fields.

Suggested Citation

  • Lambrecht, Isabel & Vanlauwe, Bernard & Maertens, Miet, 2014. "Integrated soil fertility management: from concept to practice in eastern DR Congo," Working Papers 180062, Katholieke Universiteit Leuven, Centre for Agricultural and Food Economics.
  • Handle: RePEc:ags:kucawp:180062
    as

    Download full text from publisher

    File URL: http://ageconsearch.umn.edu/record/180062/files/Lambrecht_Cite.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. David R. Lee, 2005. "Agricultural Sustainability and Technology Adoption: Issues and Policies for Developing Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(5), pages 1325-1334.
    2. Esther Duflo & Michael Kremer & Jonathan Robinson, 2008. "How High Are Rates of Return to Fertilizer? Evidence from Field Experiments in Kenya," American Economic Review, American Economic Association, vol. 98(2), pages 482-488, May.
    3. Mendola, Mariapia, 2007. "Agricultural technology adoption and poverty reduction: A propensity-score matching analysis for rural Bangladesh," Food Policy, Elsevier, vol. 32(3), pages 372-393, June.
    4. Andre Croppenstedt & Mulat Demeke & Meloria M. Meschi, 2003. "Technology Adoption in the Presence of Constraints: the Case of Fertilizer Demand in Ethiopia," Review of Development Economics, Wiley Blackwell, vol. 7(1), pages 58-70, February.
    5. Christine M. Moser & Christopher B. Barrett, 2006. "The complex dynamics of smallholder technology adoption: the case of SRI in Madagascar," Agricultural Economics, International Association of Agricultural Economists, vol. 35(3), pages 373-388, November.
    6. Rosegrant, Mark W. & Koo, Jawoo & Cenacchi, Nicola & Ringler, Claudia & Robertson, Richard D. & Fisher, Myles & Cox, Cindy M. & Garrett, Karen & Perez, Nicostrato D. & Sabbagh, Pascale, 2014. "Synopsis of Food security in a world of natural resource scarcity: The role of agricultural technologies:," Issue briefs 81, International Food Policy Research Institute (IFPRI).
    7. Rauniyar, Ganesh P. & Goode, Frank M., 1992. "Technology adoption on small farms," World Development, Elsevier, vol. 20(2), pages 275-282, February.
    8. Marenya, Paswel P. & Barrett, Christopher B., 2007. "Household-level determinants of adoption of improved natural resources management practices among smallholder farmers in western Kenya," Food Policy, Elsevier, vol. 32(4), pages 515-536, August.
    9. Wakeyo, Mekonnen B. & Gardebroek, Cornelis, 2013. "Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 114(C), pages 54-63.
    10. Jeffrey H. Dorfman, 1996. "Modeling Multiple Adoption Decisions in a Joint Framework," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(3), pages 547-557.
    11. Hailemariam Teklewold & Menale Kassie & Bekele Shiferaw, 2013. "Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 597-623, September.
    12. Ozgur Kaya & Ilker Kaya & Lewell Gunter, 2013. "Foreign Aid and the Quest for Poverty Reduction: Is Aid to Agriculture Effective?," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 583-596, September.
    13. Madhu Khanna, 2001. "Sequential Adoption of Site-Specific Technologies and its Implications for Nitrogen Productivity: A Double Selectivity Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(1), pages 35-51.
    14. Rosegrant, Mark W. & Koo, Jawoo & Cenacchi, Nicola & Ringler, Claudia & Robertson, Richard D. & Fisher, Myles & Cox, Cindy M. & Garrett, Karen & Perez, Nicostrato D. & Sabbagh, Pascale, 2014. "Food security in a world of natural resource scarcity: The role of agricultural technologies," IFPRI books, International Food Policy Research Institute (IFPRI), number 978-0-89629-847-7.
    15. Abhijit Sharma & Alastair Bailey & Iain Fraser, 2011. "Technology Adoption and Pest Control Strategies Among UK Cereal Farmers: Evidence from Parametric and Nonparametric Count Data Models," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(1), pages 73-92, February.
    16. Gregory Amacher & Jeffrey Alwang, 2004. "Productivity and Land Enhancing Technologies in Northern Ethiopia: Health, Public Investments, and Sequential Adoption," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 321-331.
    17. Mathenge, Mary K. & Smale, Melinda & Olwande, John, 2014. "The impacts of hybrid maize seed on the welfare of farming households in Kenya," Food Policy, Elsevier, vol. 44(C), pages 262-271.
    18. Paswel P. Marenya & Christopher B. Barrett, 2009. "State-conditional Fertilizer Yield Response on Western Kenyan Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 991-1006.
    19. Kassie, Menale & Jaleta, Moti & Shiferaw, Bekele & Mmbando, Frank & Mekuria, Mulugetta, 2013. "Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 525-540.
    20. Sheahan, Megan & Barrett, Christopher B., 2014. "Understanding the agricultural input landscape in Sub-Saharan Africa : recent plot, household, and community-level evidence," Policy Research Working Paper Series 7014, The World Bank.
    21. Lambrecht, Isabel & Vanlauwe, Bernard & Merckx, Roel & Maertens, Miet, 2014. "Understanding the Process of Agricultural Technology Adoption: Mineral Fertilizer in Eastern DR Congo," World Development, Elsevier, vol. 59(C), pages 132-146.
    22. Kassie, Menale & Shiferaw, Bekele & Muricho, Geoffrey, 2011. "Agricultural Technology, Crop Income, and Poverty Alleviation in Uganda," World Development, Elsevier, vol. 39(10), pages 1784-1795.
    23. Sheahan, Megan & Black, Roy & Jayne, T.S., 2013. "Are Kenyan farmers under-utilizing fertilizer? Implications for input intensification strategies and research," Food Policy, Elsevier, vol. 41(C), pages 39-52.
    24. Bekele A. Shiferaw & Tewodros A. Kebede & Liang You, 2008. "Technology adoption under seed access constraints and the economic impacts of improved pigeonpea varieties in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 39(3), pages 309-323, November.
    25. Nassul Ssentamu Kabunga & Thomas Dubois & Matin Qaim, 2012. "Heterogeneous information exposure and technology adoption: the case of tissue culture bananas in Kenya," Agricultural Economics, International Association of Agricultural Economists, vol. 43(5), pages 473-486, September.
    26. Moser, Christine M. & Barrett, Christopher B., 2003. "The disappointing adoption dynamics of a yield-increasing, low external-input technology: the case of SRI in Madagascar," Agricultural Systems, Elsevier, vol. 76(3), pages 1085-1100, June.
    27. Meike Wollni & David R. Lee & Janice E. Thies, 2010. "Conservation agriculture, organic marketing, and collective action in the Honduran hillsides," Agricultural Economics, International Association of Agricultural Economists, vol. 41(3-4), pages 373-384, May.
    28. Millicent deGraft-Johnson & Aya Suzuki & Takeshi Sakurai & Keijiro Otsuka, 2014. "On the transferability of the Asian rice green revolution to rainfed areas in sub-Saharan Africa: an assessment of technology intervention in Northern Ghana," Agricultural Economics, International Association of Agricultural Economists, vol. 45(5), pages 555-570, September.
    29. Asfaw, Solomon & Shiferaw, Bekele & Simtowe, Franklin & Lipper, Leslie, 2012. "Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia," Food Policy, Elsevier, vol. 37(3), pages 283-295.
    30. T.S. Jayne & Shahidur Rashid, 2013. "Input subsidy programs in sub-Saharan Africa: a synthesis of recent evidence," Agricultural Economics, International Association of Agricultural Economists, vol. 44(6), pages 547-562, November.
    31. Place, Frank & Barrett, Christopher B. & Freeman, H. Ade & Ramisch, Joshua J. & Vanlauwe, Bernard, 2003. "Prospects for integrated soil fertility management using organic and inorganic inputs: evidence from smallholder African agricultural systems," Food Policy, Elsevier, vol. 28(4), pages 365-378, August.
    32. Knowler, Duncan & Bradshaw, Ben, 2007. "Farmers' adoption of conservation agriculture: A review and synthesis of recent research," Food Policy, Elsevier, vol. 32(1), pages 25-48, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Agricultural and Food Policy; Crop Production/Industries; Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:kucawp:180062. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/alkulbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.