IDEAS home Printed from https://ideas.repec.org/p/ags/iamodp/14922.html
   My bibliography  Save this paper

Technical And Economic Efficiency Of Russian Corporate Farms: The Case Of The Moscow Region

Author

Listed:
  • Svetlov, Nikolai M.
  • Hockmann, Heinrich

Abstract

The research focus of the paper is to distinguish allocative and technical inefficiencies on Moscow region corporate farms. DEA specifications with both monetary and technical objective functions are applied. Reduced costs and sensitivity analyses are used to identify fixed inputs constraining either allocative or technical efficiency. To decrease heterogeneity and allow for the accessibility to different technologies of a given farm, the farms are grouped with respect to the set of outputs they produce. Thus, as a result of an unstable market environment, it is shown that allocative inefficiency causes 65-100 % (depending on the group) of total inefficiency in 2002 and 60-96 % in 1999. As for technical inefficiency, in 1999 its major source was the lack of liquidity (30-48 %) and other resources; in 2002 it was the lack of fodder (up to 37 %), liquidity (up to 31 %) and sown area (48 % in one of the groups). The role of insufficient management in regional farming inefficiency is evaluated as being much lower than many earlier studies suggest. ZUSAMMENFASSUNG DETERMINATNTEN DER TECHNISCHEN UND ÖKONOMISCHEN EFFIZIENZ VON LANDWIRTSCHAFTLICHEN BETRIEBEN IN RUSSLAND: DER OBLAST MOSKAU In dem Diskussionspapier wird eine Unterscheidung zwischen allokativer und technischer Effizienz landwirtschaftlicher Betriebe in der Region Moskau vorgenommen. Hierzu werden DEA-Modelle mit technischen und ökonomischen Zielfunktionen spezifiziert. Mit Hilfe von Sensitivitätsanalysen werden Inputs identifiziert, die zu allokativer und technischer Ineffizienz führen. Um die Heterogenität in der Stichprobe zu reduzieren und um die Verfügbarkeit von Technologien für die landwirtschaftlichen Betriebe besser abbilden zu können, werden die Unternehmen entsprechend ihrer Produktionsstruktur gruppiert. Die Ergebnisse zeigen, dass je nach Gruppen die allokative Ineffizienz in den Jahren 1999 und 2002 zwischen 60 und 100 % der gesamten Ineffizienz erklärt. Dies deutet darauf hin, dass das unzureichende Management von größerer Bedeutung ist, als frühere Studien vermuten lassen. Die Hauptursache für die technische Ineffizienz war 1999 das Fehlen liquider Mittel. Im Jahr 2002 waren neben der Liquidität, die Verfügbarkeit von Futtermitteln und die Saatfläche die Inputs, die für die Ineffizienz verantwortlich waren. Der Anteil der bindenden Restriktionen betrug in den einzelnen Gruppen bis zu 31 %, 37 % und 48 % bei den genannten Faktoren. РЕЗЮМЕ ФАКТОРЫ ТЕХНИЧЕСКОЙ И ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ РОССИЙСКИХ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ПРЕДПРИЯТИЙ: НА ПРИМЕРЕ МОСКОВСКОЙ ОБЛАСТИ Цель исследования соизмерение резервов, обусловленных адаптацией к рынку и использованием технологического потенциала, в сельскохозяйственных организациях Московской области. Применённые модели основаны на методе инкапсуляции данных, решаются по технологическому и стоимостному критериям. Для выявления ресурсов, дефицит которых снижает показатели эффективности адаптации к рынку и (или) технологической эффективности, использован анализ чувствительности и двойственных оценок. Для снижения гетерогенности и учёта доступности технологий исследуемым хозяйствам их совокупность разбита на группы по набору реализуемых видов продукции. Показано, что в 2002 г. 65-100 % (в зависимости от группы хозяйств) резервов повышения экономической эффективности объясняется недостаточной адаптацией к рынку (в 1999 60-96 %) по причине нестабильной рыночной конъюнктуры. Резервы роста технологической эффективности в 1999 г. были связаны с дефицитом ликвидности (30-48 % объёма резервов) и других ресурсов, в 2002 с ограниченностью кормов (до 37 %), ликвидности (до 31 %) и посевов (48 % в одной из групп). Роль неудовлетворительного управления в неэффективности сельхозорганизаций региона оказалась значительно меньше, чем это представлялось во многих предшествующих публикациях.

Suggested Citation

  • Svetlov, Nikolai M. & Hockmann, Heinrich, 2005. "Technical And Economic Efficiency Of Russian Corporate Farms: The Case Of The Moscow Region," IAMO Discussion Papers 14922, Institute of Agricultural Development in Transition Economies (IAMO).
  • Handle: RePEc:ags:iamodp:14922
    DOI: 10.22004/ag.econ.14922
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/14922/files/dp050084.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.14922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sedik, David & Trueblood, Michael & Arnade, Carlos, 1999. "Corporate Farm Performance in Russia, 1991-1995: An Efficiency Analysis," Journal of Comparative Economics, Elsevier, vol. 27(3), pages 514-533, September.
    2. Valdmanis, Vivian, 1992. "Sensitivity analysis for DEA models : An empirical example using public vs. NFP hospitals," Journal of Public Economics, Elsevier, vol. 48(2), pages 185-205, July.
    3. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    4. Lerman, Zvi & Shagaida, Natalya, 2005. "Land Reform and Development of Agricultural Land Markets in Russia," 2005 Annual meeting, July 24-27, Providence, RI 19461, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Vasilii Uzun, 2005. "Large and Small Business in Russian Agriculture: Adaptation to Market," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 47(1), pages 85-100, March.
    6. Nikolai Svetlov, 2001. "Econometric application of linear programming: a model of Russian large-scale farm (the case of the Moscow Region)," Econometrics 0112002, University Library of Munich, Germany.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. David Epstein & Peter Tillack, 1999. "How Russian Agricultural Enterprises Are Surviving: The Financial Status of Large Agricultural Enterprises in the St. Petersburg Region," Eastern European Economics, Taylor & Francis Journals, vol. 37(5), pages 52-92, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramanovich, Mikhail, 2010. "Zur Bestimmung der Wettbewerbsfähigkeit des weißrussischen Milchsektors: Aussagefähigkeit von Wettbewerbsindikatoren und Entwicklung eines kohärenten Messungskonzepts," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 53, number 94739, June.
    2. Heinrich Hockmann & Michael Kopsidis, 2007. "What Kind of Technological Change for Russian Agriculture? The Transition Crisis of 1991-2005 from the Induced Innovation Theory Perspective," Post-Communist Economies, Taylor & Francis Journals, vol. 19(1), pages 35-52.
    3. Svetlov, Nikolai M., 2007. "Corporate farm size determinants in transitional economy: the case of the Moscow region," 102nd Seminar, May 17-18, 2007, Moscow, Russia 10017, European Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hockmann, Heinrich & Svetlov, Nikolai M., 2006. "Factors Constraining Efficiency of Russian Corporate Farms: The Case of the Moscow Region," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25439, International Association of Agricultural Economists.
    2. Jesús T. Pastor & JosÉ L. Ruiz & Inmaculada Sirvent, 2002. "A Statistical Test for Nested Radial Dea Models," Operations Research, INFORMS, vol. 50(4), pages 728-735, August.
    3. L Cherchye & W Moesen & N Rogge & T Van Puyenbroeck & M Saisana & A Saltelli & R Liska & S Tarantola, 2008. "Creating composite indicators with DEA and robustness analysis: the case of the Technology Achievement Index," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(2), pages 239-251, February.
    4. Halkos, George & Tzeremes, Nickolaos, 2010. "Performance evaluation using bootstrapping DEA techniques: Evidence from industry ratio analysis," MPRA Paper 25072, University Library of Munich, Germany.
    5. Varabyova, Yauheniya & Schreyögg, Jonas, 2013. "International comparisons of the technical efficiency of the hospital sector: Panel data analysis of OECD countries using parametric and non-parametric approaches," Health Policy, Elsevier, vol. 112(1), pages 70-79.
    6. Hallsteinli, Vidar & Kittelsen, Sverre AC & Magnussen, Jon, 2009. "Scale, efficiency and organization in Norwegian psychiatric outpatient clinics for children," HERO Online Working Paper Series 2001:8, University of Oslo, Health Economics Research Programme.
    7. Christian Growitsch & Tooraj Jamasb & Christine Müller & Matthias Wissner, 2016. "Social Cost Efficient Service Quality: Integrating Customer Valuation in Incentive Regulation—Evidence from the Case of Norway," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 71-91, Springer.
    8. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, January.
    9. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    10. Mahlberg, Bernhard & Url, Thomas, 2010. "Single Market effects on productivity in the German insurance industry," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1540-1548, July.
    11. Danish Ahmed SIDDIQUI & Qazi Masood AHMED, 2019. "Are institutions a crucial determinant of cross country economic efficiency? A two-stage double bootstrap data envelopment analysis," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(1(618), S), pages 89-114, Spring.
    12. Miningou, Élisé Wendlassida & Vierstraete, Valérie, 2013. "Households' living situation and the efficient provision of primary education in Burkina Faso," Economic Modelling, Elsevier, vol. 35(C), pages 910-917.
    13. George Emm Halkos & Nickolaos G. Tzeremes, 2011. "Measuring economic journals’ citation efficiency: a data envelopment analysis approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 979-1001, September.
    14. Talluri, Srinivas & Narasimhan, Ram, 2004. "A methodology for strategic sourcing," European Journal of Operational Research, Elsevier, vol. 154(1), pages 236-250, April.
    15. Shuji Yao & Zhongwei Han & Dan Luo, 2010. "Performance of the Chinese Insurance Industry under Economic Reforms," Books, Edward Elgar Publishing, number 12788, December.
    16. George Halkos & Roman Matousek & Nickolaos Tzeremes, 2016. "Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 47-77, January.
    17. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    19. H Fukuyama & W L Weber, 2009. "Estimating indirect allocative inefficiency and productivity change," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1594-1608, November.
    20. Oleg Badunenko & Daniel J. Henderson & Subal C. Kumbhakar, 2012. "When, where and how to perform efficiency estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(4), pages 863-892, October.

    More about this item

    Keywords

    Farm Management; Productivity Analysis;

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iamodp:14922. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/iamoode.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iamoode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.